Browse > Article
http://dx.doi.org/10.4014/jmb.1211.11057

Submerged Culture Conditions for the Production of Alternative Natural Colorants by a New Isolated Penicillium purpurogenum DPUA 1275  

Santos-Ebinuma, Valeria Carvalho (Department of Biochemical and Pharmaceutical Technology, University of Sao Paulo)
Teixeira, Maria Francisca Simas (Culture Collection DPUA/UFAM. Universidade Federal do Amazonas)
Pessoa, Adalberto Jr. (Department of Biochemical and Pharmaceutical Technology, University of Sao Paulo)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.6, 2013 , pp. 802-810 More about this Journal
Abstract
This work aims at investigating the production of yellow, orange, and red natural colorants in a submerged culture of Penicillium purpurogenum DPUA 1275. For this purpose, different experimental conditions evaluating the effect of incubation time, type and size of inoculum, and different carbon and nitrogen sources were performed. Furthermore, the growth kinetics were obtained in the conditions of $10^8$ spores/ml and 5 mycelia agar discs during 360 h. These experiments showed that 5 mycelia agar discs and 336 h promoted the highest yellow (3.08 $UA_{400nm}$), orange (1.44 $UA_{470nm}$), and red (2.27 $UA_{490nm}$) colorants production. Moreover, sucrose and yeast extract were the most suitable carbon and nitrogen sources for natural colorants production. Thus, the present study shows a new source of natural colorants, which can be used as an alternative to others available in the market after toxicological studies.
Keywords
Natural colorants; filamentous fungi; submerged culture; production;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Deveoglu, O., E. Cakmakc , T. Taskopru, E. Torgan, and R. Karadag. 2012. Identification by RP-HPLC-DAD, FTIR, TGA and FESEM-EDAX of natural pigments prepared from Datisca cannabina. Dyes Pigments 94: 437-442.   DOI   ScienceOn
2 Antunes, J. G. 1997. Bioconversao de D-xilose a etanol por Pichia stipitis. [S.l.]: Universidade Federal do Rio de Janeiro.
3 Babitha, S., C. R. Soccol, and A. Pandey. 2007. Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technol. 98: 1554-1560.   DOI   ScienceOn
4 Boo, H. O., S. J. Hwang, C. S. Bae, S. H. Park, B. G. Heo, and S. Gorinstein. 2012. Extraction and characterization of some natural plant pigments. Ind. Crops Prod. 40: 129-135.   DOI   ScienceOn
5 Chen, M. H. and M. R. Johns. 1993. Effect of pH and nitrogen source on pigment production by Monascus purpureus. Appl. Microbiol. Biotechnol. 40: 132-138.
6 Cho, Y. J., J. P. Park, H. J. Hwang, S. W. Kim, J. W. Choi, and J. W. Yun. 2002. Production of red pigment by submerged culture of Paecilomyces sinclairii. Lett. Appl. Microbiol. 35: 195-202.   DOI   ScienceOn
7 Dhake, A. B. and M. B. Pati. 2005. Production of $\beta$-glucosidase by Penicillium purpurogenum. Braz. J. Microbiol. 36: 170-176.
8 Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related compounds. Anal. Chem. 28: 350-356.   DOI
9 Dufossé, L., P. Galaup, A. Yaron, S. M. Arad, P. Blanc, K. N. C. Murthy, and G. A. Ravishankar. 2005. Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality? Trends Food Sci. Technol. 16: 389-406.   DOI   ScienceOn
10 Esposito, E. and J. L. Azevedo. 2004. Fungos: Uma introdução à biologia, bioquímica e biotecnologia. EDUCS, Caxias do Sul.
11 Griffin, D. H. 1994. Fungal Physiology. Wiley Liss.
12 Fang, T. J. and Y. S. Cheng. 1993. Improvement of astaxanthin production by Phaffia rhodozyma through mutation and optimization of culture conditions. J. Ferment. Bioeng. 75: 466-469.   DOI   ScienceOn
13 Gams, W., R. A. Samson, and J. A. Stalpers. 1975. Course of Mycology. Academy of Sciences and Letters, England.
14 Gibbs, D. H., R. J. Seviour, and F. Schmid. 2000. Growth of filamentous fungi in submerged culture: Problems and possible solutions. Crit. Rev. Biotechnol. 20: 17-48.   DOI   ScienceOn
15 Gunasekaran, S. and R. Poorniammal. 2008. Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. Afr. J. Biotechnol. 7: 1894-1898.   DOI
16 Hailei, W., R. Zhifang, L. Ping, G. Yanchang, L. Guosheng, and Y. Jianming. 2011. Improvement of the production of a red pigment in Penicillium sp. HSD07B synthesized during coculture with Candida tropicalis. Bioresource Technol. 102: 6082-6087.   DOI   ScienceOn
17 Johns, M. R. and D. M. Stuart. 1991. Production of pigments by Monascus purpureus in solid culture. J. Ind. Microbiol. 8: 23-38.   DOI
18 Kang, S. G., J. W. Rhim, S. T. Jung, and S. J. Kim. 1996. Production of red and yellow pigment from Monascus anka in a jar fermenter. Korean J. Appl. Microbiol. Biotechnol. 24: 756-762.
19 Kongruang, S. 2011. Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor. J. Ind. Microbiol. Biot. 38: 93-99.   DOI
20 Lehninger, A. L. 1976. Bioquímica, Componentes Moleculares das Células, 2nd Ed. Edgard Blucher Ltda, Sao Paulo.
21 Mapari, S. A. S., A. S. Meyer, and U. Thrane. 2009. Photostability of natural orange-red and yellow fungal pigments in liquid food model systems. J. Agric. Food Chem. 57: 6253-6261.   DOI   ScienceOn
22 Maldonado, M. C., A. M. S. Saad, and D. Callieri. 1989. Catabolic repression of the synthesis of inducible polygalacturonase and pectinesterase by Aspergillus níger. Curr. Microbiol. 18: 303-306.   DOI
23 Manachini, P. L., M. G. Fortina, and C. Partini. 1987. Purification of endopolygalacturonase produced by Rhizopus stolonifer. Biotechnol. Lett. 9: 219-224.   DOI
24 Mapari, S. A. S., A. S. Meyer, U. Thrane, and J. C. Frisvad. 2009. Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chematoxonomic rationale. Microb. Cell Fact. 8: 1-15.   DOI   ScienceOn
25 Mapari, S. A. S., U. Thrane, and A. S. Meyer. 2010. Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol. 28: 300-307.   DOI   ScienceOn
26 Marco, H. G. and G. Gade. 2010. Biological activity of the predicted red pigment-concentrating hormone of Daphnia pulex in a crustacean and an insect. Gen. Comp. Endocrinol. 166: 104-110.   DOI   ScienceOn
27 Martín, J. F., J. Casqueiro, and P. Liras. 2005. Secretion systems for secondary metabolites: How producer cells send out messages of intercellular communication. Curr. Opin. Microbiol. 8: 282-293.   DOI   ScienceOn
28 Meinicke, R. M., F. Vendruscolo, D. E. Moritz, D. de Oliveira, W. Schmidell, R. W. Samohyl, and J. L. Ninow. 2012. Potential use of glycerol as substrate for the production of red pigments by Monascus ruber in submerged fermentation. Biocatal. Agric. Biotechnol. 1: 238-242.
29 Piccoli-valle, R. H., F. J. V. Passos, I. V. Brandi, L. A. Peternelli, and D. O. Silva. 2003. Influence of different mixing and aeration regimens on pectin lyase production by Penicillium griseoroseum. Crop Sci. 38: 849-854.
30 Mendez, A., C. Perez, J. C. Montanez, G. Martinez, and C. N. Aguilar. 2011. Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J. Zhejiang Univ. Sci. B 12: 961-968.   DOI   ScienceOn
31 Omura, S., H. Ikeda, A. Hanamoto, C. Takahashi, M. Shinose, Y. Takahashi, et al. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA 98: 12215-12220.   DOI   ScienceOn
32 Pastrana, L., P. J. Blanc, A. L. Santerre, M. Loret, and G. Goma. 1995. Production of red pigments by Monascus ruber in synthetic media with a strictly controlled nitrogen source. Process Biochem. 30: 333-341.   DOI   ScienceOn
33 Pitt, J. 1985. A Laboratory Guide to Common Penicillium Species. CSIRO, Australia.
34 Putzke, J. and M. T. L. Putzke. 2002. Reino dos Fungos. EDUNISC.
35 Rapper, K. B. and D. I. Fennel. 1977. The Genus Aspergillus. Malabar Publishing Company, Florida.
36 Saha, S., R. Thavasi, and S. Jayalakshmi. 2008. Phenazine pigments from Pseudomonas aeruginosa and their applications as antibacterial agent and food colourants. Res. J. Microbiol. 3: 122-128.   DOI
37 Samson, R. A., H. C. Evans, and J. P. Lagte. 1988. Atlas of Entomopathogenic Fungi. Springer-Verlag, Berlin, Heidelberg. New York.
38 Teixeira, M. F. S., T. Amorim, R. A. Palheta, and H. M. Atayde. 2011. Fungos da Amazonia: Uma riqueza inexplorada (aplicacoes biotecnologicas). EDUA, Manaus.
39 Velmurugan, P., Y. H. Lee, C. K. Venil, P. Lakshmanaperumalsamy, J. C. Chae, and B. T. Oh. 2010. Effect of light on growth, intracellular and extracellular pigment production by five pigmentproducing filamentous fungi in synthetic medium. J. Biosci. Bioeng. 109: 346-350.   DOI
40 Teixeira, M. F. S., M. S. Martins, J. Da Silva, L. S. Kirsch, O. C. C. Fernandes, A. L. B. Carneiro, et al. 2012. Amazonian biodiversity: Pigments from Aspergillus and Penicillium - characterizations, antibacterial activities and their toxicities. Curr. Trends Biotechnol. Pharmacol. 6: 300-311.
41 Teng, S. S. and W. Feldheim. 2001. Anka and anka pigment production. J. Ind. Microbiol. Biotechnol. 26: 280-282.   DOI
42 Unagul, P., P. Wongsa, P. Kittakoop, S. Intamas, and P. Srikitikulchai. 2005. Production of red pigments by the insect pathogenic fungus Cordyceps unilateralis BCC 1869. J. Ind. Microbiol. Biotechnol. 32: 135-140.   DOI
43 Velmurugan, P., S. Kamala-Kannan, V. Balachandar, P. Lakshmanaperumalsamy, J. C. Chae, and B. T. Oh. 2010. Natural pigment extraction from five filamentous fungi for industrial applications and dyeing of leather. Carbohydr. Polym. 79: 262-268.   DOI   ScienceOn
44 Wang, L., D. Ridgway, T. Gu, and M. Moo-Young. 2005. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnol. Adv. 23: 115-129.   DOI   ScienceOn
45 Wybraniec, S. 2005. Formation of decarboxylated betacyanins in heated purified fractions from red beet root (Beta vulgaris L.) monitored by LC-MS/MS. J. Agric. Food Chem. 53: 3483-3487.   DOI   ScienceOn
46 Yang, L. H., H. Xiong, O. O. Lee, S. H. Qi, and P. Y. Qian. 2007. Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Lett. Appl. Microbiol. 44: 625-630.   DOI   ScienceOn