• Title/Summary/Keyword: Alpha phase

Search Result 1,603, Processing Time 0.034 seconds

The Evolution of the Mass-Metallicity Relation at 0.20 < z < 0.35

  • Chung, Jiwon;Rey, Soo-Chang;Sung, Eon-Chang
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2013
  • We present a spectroscopic study of 343 blue compact galaxies (BCGs) at 0.20 < z < 0.35 from the Sloan Digital Sky Survey (SDSS) DR7 data. We derive gas phase oxygen abundance using the empirical and direct method. Stellar masses of galaxies are derived from the STARLIGHT code. We also derive star formation rates of galaxies based on $H{\alpha}$ emission line from the SDSS as well as far-ultraviolet (FUV) flux from the Galaxy Evolution Explorer GR6 data. Evolution of the luminosity-metallicity and mass-metallicity (M-Z) relations with redshift is observed. At a given luminosity and mass, galaxies at higher redshifts appear to be biased to low metallicities relative to the lower redshift counterparts. Furthermore, low mass galaxies show higher specific star formation rates (SSFRs) than more massive ones and galaxies at higher redshifts are biased to higher SSFRs compared to the lower redshift sample. By visual inspection of the SDSS images, we classify galaxy morphology into disturbed or undisturbed. In the M-Z relation, we find a hint that morphologically disturbed BCGs appear to exhibit low metallicities and high SSFRs compared to undisturbed counterparts. We suggest that our results support downsizing galaxy formation scenario and star formation histories of BCGs are closely related with their morphologies.

Microstructures and Mechanical Properties of AZ31-(0~0.5%)Ca alloys (AZ31-(0~0.5)%Ca 합금의 미세조직과 기계적 성질)

  • Jun, Joong-Hwan;Park, Bong-Koo;Kim, Jeong-Min;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.5
    • /
    • pp.299-304
    • /
    • 2004
  • Influence of Ca addition on microstructure and room temperature mechanical properties has been studied for AZ31(Mg-3%Al-1%Zn-0.2%Mn)-(0~0.5)%Ca wrought alloys, based on experimental results from metallography, X-ray diffractometry and mechanical tests. Yield strength, ultimate tensile strength and hardness of the alloys increased remarkably with increasing Ca content, whereas elongation was deteriorated continuously. Microstructural examination revealed that Ca addition efficiently refined grains of ${\alpha}$(Mg) phase and that some of the Ca dissolved in ${\beta}(Mg_{17}Al_{12})$ precipitates. The former and the latter facts are thought to be responsible for improved strength and loss of ductility of the AZ31+Ca wrought alloys, respectively.

The Effect of Estragole Identified and Extracts from Agastache rugosa O. Kuntze on the Fungal Growth and Metabolism (진균류의 증식과 대사에 미치는 방아(Agastache rugosa)추출물과 Estragole의 효과)

  • 박재림;박송희;김정옥;김수원;이수영
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.1
    • /
    • pp.63-70
    • /
    • 1997
  • The extracts from Agastache rugosa O. Kuntze, their chloroform and hexane fractions, and estragole identified from hexane fraction were tested to investigate the effects on the growth and metabolic activities of several true fungi. The fungi used were: Aspergillus oryzae KFCC 890, Aspergillus niger KCCM 11240, Saccharomyces cerevisiae IAM 4597, Saccharomyces ellipsoideus PNU 2215. The growth of S. Cerevisiae by treatment of water extract(1%), hexane fraction (0.05%), and estragole (0.05%) were inhibited 93%, 50%, and 33% respectively, and S. ellipsoideus was also inhibited markedly with delaying the alg phase maximum 12 hrs. The growth of A. oryzae was inhibited by treatment of extracts and fractions. The echanol production by S. cerevisiae was increased more than two times in the highest value around 42 hrs incubation by water extract, but chloroform fraction inhibited its production. The glucoamylase actibities by A. niger were strongly inhibited by hexane and chloroform fractions (0.05%). The invertase activity by S. cerevisiae using estragole (0.05%) reached to 57.5% of control group. S. cerevisiae treated with the estragole was damaged the cell wall and cell membrane, leaked the protoplasm, and observed broken pieces of cell.

  • PDF

Purification and Properties of HPS (Halitosis Prevention Substance) Isolated from Cumin (Cuminum cyminum L.) Seed

  • Kang, Eun-Ju;Ryu, Il-Hwan;Lee, Kap-Sang
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.621-627
    • /
    • 2005
  • Halitosis is mainly caused by the presence of volatile sulfur-containing compounds (VSC's) produced by proteolytic periodontopathic bacteria in the oral cavity. Various mouth-rinses have been offered on the market as solutions to reduce halitosis. The aim of this study was to find a potent substance for the prevention of halitosis. The halitosis prevention substance (HPS) from cumin seed powder was purified by solvent extraction, silica gel column chromatography and preparative TLC to yield an oil phase (0.98%). Instrumental analysis such as FT-IR, $^1H$-NMR and $^{13}C$-NMR showed that HPS contained an -OH group, -HC=CH-, -COO-, and long chain acyl group. HPS was therefore determined to be 2-hydroxyethyl-${\beta}$-undecenate. HPS inhibited the growth of Fusobacterium nucleatum and Porphyromonas gingivalis, by 72.44% and 64.37% at $1{\times}10^{-2}\;M$, and by 99.85% and 91.62% at $5\;{\times}\;10^{-2}\;M$, respectively. It also inhibited the activity of L-methionine-${\alpha}$-deamino-${\gamma}$-mercaptomethane-lyase (METase), which was produced by oral microbes. Furthermore, the VSC production by oral microbes in the human mouth air decreased with increasing HPS concentration. These results suggested that HPS from cumin seed is an efficient halitosis prevention agent.

Numerical Analysis on the Aerodynamic Characteristics of Thin Airfoil with Flapping and Pitching Motion (플래핑 운동 및 키놀이 운동을 하는 얇은 에어포일의 공력특성에 대한 수치 해석)

  • Kim, Woo-Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • In this study, lumped-vortex element method and thin airfoil theory were used to analyze aerodynamic characteristics of airfoils with relative motion that had camber lines of NACA $44{\times}{\times}$ airfoil in 2-dimensional unsteady incompressible potential flow. Velocity disturbance due to airfoil was calculated by lumped-vortex element model and force distribution on airfoil by unsteady Bernoulli's equation. Variables in relative motion were considered the period p, the amplitude of flapping $A_f$ and pitching $A_p$, and the phase difference between flapping and pitching ${\phi}_p$ and the angle of attack ${\alpha}$. Due to movement of an airfoil, dag was induced in 2-dimensional unsteady incompressible potential flow. The numerical results show that the aerodynamic characteristics of the airfoil with flapping and pitching at the same time are illustrated. Especially the mean lift coefficient became smaller, but drag coefficient became larger.

Effect of Hydrogen on Dezincification of Cu-Zn Brass (Cu-Zn 황동에서 수소가 탈아연 부식에 미치는 영향)

  • Choe, Byung Hak;Lee, Bum Gyu;Jang, Hyeon Su;Jeon, Woo Il;Park, Yong Sung;Lim, Jae Kyun;Lee, Jin Hee;Park, Chan Sung;Kim, Jin Pyo
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.172-178
    • /
    • 2017
  • The aim of this study is to consider the effect hydrogen on dezincification behavior of Cu-Zn alloys. The investigations include microstructural observations with scanning electron microscope and chemical composition analysis with energy dispersive spectrometer. The dezincification layer was found to occur in high pressure hydrogen atmosphere, not in air atmosphere. In addition, the layers penetrated into the inner side along the grain boundaries in the case of hydrogen condition. The shape of the dezincification layers was porous because of Zn dissolution from the ${\alpha}$ or ${\beta}$ phase. In the case of stress corrosion cracks formed in the Cu-Zn microstructure, the dezincification phenomenon with porous voids was also accompanied by grain boundary cracking.

Effect of Prolonged Running-induced Fatigue on Free-torque Components

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the differences in FT (free-torque) components between non-fatigue and fatigue conditions induced by prolonged running. Methods: Fifteen healthy runners with no previous lower-extremity fractures ($22.0{\pm}2.1$ years of age) participated in this study. Ground reaction force data were collected for the right-stance phase for 10 strides of 5 and 125-min running periods at 1,000 Hz using an instrumented force platform (instrumented dual-belt treadmills, Bertec, USA) while the subjects ran on it. The running speed was set according to the preferences of the subjects, which were determined before the experiment. FT variables were calculated from the components of the moment and force output from the force platform. A repeated-measures one-way ANOVA was used to test for significant differences between the two conditions. The alpha level for all the statistical tests was 0.05. Results: The absolute FT at the peak braking force was significantly greater after 5 mins of running than after 125 mins of running-which was regarded as a fatigued state-but there were no significant differences in the absolute peak FT or impulse between the conditions. Conclusion: The FT variables in the fatigue condition during prolonged running hardly affect the tibial stress syndrome.

Humidity Properties of Sintered MnWO4 with a Low Temperature Firing Frit (저온소성 프릿이 첨가된 MnWO4의 소결체의 습도특성)

  • Jung, Byung-hae;So, Ji-young;Kim, Hyung-sun
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.120-125
    • /
    • 2003
  • A low melting borosilicate glass frit was used as an adhesion promoter, which enables $MnWO_4$to be sintered with in a reasonable sintering temperature range ($800∼1000^{\circ}C$). The glass was evaluated for glass transition temperature ($Τ_{g}$ X) and thermal expansion coefficient($\alpha$). Mechanical property (Vickers hardness), grain growth, the comparison of lattice parameter and pore distribution of sintered $MnWO_4$ with the frit were methodically discussed. As sintering temperature increased, a typical liquid phase sintering showed the rapid grain growth and high densification of X$MnWO_4$grain, improvement of hardness (until $920^{\circ}C$) and different pore size distribution. Resistance of sintered $MnWO_4$varied from 450k$\Omega$ to 8.8M$\Omega$ under the measuring humidify ranging from 30 to 90%. Thus, the results will contribute to the application of glass frit containing sensor materials and their future use.

Screening of Cyanobacteria (Blue-Green algae) from Rice Paddy Soil for Anti-fungal Activity against Plant Pathogenic Fungi

  • Kim, Jeong-Dong
    • Mycobiology
    • /
    • v.34 no.3
    • /
    • pp.138-142
    • /
    • 2006
  • Soil cyanobacteria isolated from the rice paddy fields of 10 different locations across Korea were evaluated by agar plate diffusion test for antifungal activity. Aqueous, petroleum ether, and methanol extracts from one hundred and forty two cyanobacterial strains belonging to the 14 genera were examined for antifungal properties against seven phytopathogenic fungi causing diseases in hot pepper (Capsicum annuum L). Of total cyanobacteria, nine cyanobacteria (6.34%) exhibited antifungal effects. The nine cyanobacteria selected with positive antifungal activities were two species of Oscillatoria, two of Anabaena, three of Nostoc, one of Nodularia, and one of Calothrix. Alternaria alternata and Botrytis cinerea were inhibited by nine and eight species of cyanobacteria, respectively. Rhizopus stolonifer was suppressed by only methanol extract of Nostoc commune FK-103. In particular, Nostoc commune FK-103 and Oscillatoria tenuis FK-109 showed strong antifungal activities against Phytophthora capsici. Their antifungal activity at the late exponential growth phase is related to the growth temperature and not associated with the growth parameters such as cell biomass and $chlorophyll-{\alpha}$ concentration. The high inhibition levels of antibiotics were 22.5 and 31.8 mm for N. commune FK-103 and O. tenuis FK-109, respectively. The optimal temperature for antibiotic productivity was $35^{\circ}C$.

Adhesion improvement between metal and ceramic substrate by using ISG process (ISG법에 의한 금속과 세라믹기판과의 밀착력 향상)

  • 김동규;이홍로;추현식
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.709-716
    • /
    • 1999
  • Ceramic is select for an alternative substrate material for high-speed circuits due to its low-thermal expansion. As, in this study, ceramic was prepared by ISG (interlayer sol-gel) process using metal salts and a metal alkoxide as the starting materials. Generally ceramic substrate is used electroless copper plating for the metallization. But it has been indicate weakely the adhesion strength between the substrate and copper layer. Therefore, this research, using the ISG process on the preparation of homogeneous and possible preparation at law temperature fabricated sol solution. Using of the dip coating method was coated for the purpose of giving the anchoring effect on the coating layer and enhancing the adhesion strength between the $Al_2$O$_3$ substrate and copper layer. This study examined primary the characteristic of the sol making condition and differential thermal analysis (DTA) X-ray diffraction (XRD) were mearsured to identify the crystal phase of heat treatment specimens. The morphology of the coated films were studied by scanning electron microscopy(SEM). As a resurt, XRD analysis was obtained patterns of $\alpha$-cordierite after heat-treatment about 2 hours at $1000^{\circ}C$. SEM analysis could have seen a large number of voids on coated film. The more contants of$ Al_2$$O_3$ Wt% was increased the more voids was advanced. Peel adhesion strength has a maximum in the contants of the TEOS:ANE of 1:0.7 mole%. In this case, adhesion strength has been measured 1150gf, peel adhesion strength were about 10 times more than uncoated of the ceramics film.

  • PDF