• Title/Summary/Keyword: Alloys

Search Result 4,352, Processing Time 0.035 seconds

A Study on the Change of Microstructures by Heat-treatment in Mo-Hf-C Alloys (Mo-Hf-C계 합금의 열처리에 따른 미세조직 변화에 관한 연구)

  • Yoon, Kook-Han;Kim, Hyeong-Ki;Lee, Chong-Mu;Park, Won-Koo;Choi, Ju
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.111-120
    • /
    • 1993
  • Abstract In this study, the Mo-Hf-O ingots containing 0.31-1.14at % Hf and 0.08-1.00at % 0 were prepared by plasma arc melting. The change of microstructure depending on the condition of heat treatmen~ was analysed by optical microscophy, auger electron microscophy, and transmission electron microscophy. Molybdenum powder with the oxygen content of 830ppm was compacted, and then melted. The oxygen content of molybdenum ingots was detected to be 40 -130ppm. As the contents of Hf and 0 increased, the grain size of ingots decreased. When molybdenum igot containing l.14at % Hf and 1.00at % C was heat treated, p-molybdenum carbide in grains was transformed into ${\alpha}$-molybdenum carbide at 130$0^{\circ}C$. Between 140$0^{\circ}C$ and 150$0^{\circ}C$, the precipitation of hafnium carbide was due to the reaction of solute Hf and C, and the hafnium carbide was saturated at grain boundaries at 150$0^{\circ}C$. When the sample was heat treated from 150$0^{\circ}C$ to 170$0^{\circ}C$, Hafnium oxide more stable thermodynamically precipitated both at grain boundaries and in grains after hafnium carbide had been dissolved at grain boundaries.

  • PDF

A STUDY ON THE BOND STRENGTH OF HEAT-CURING ACRYIC RESIN BONDED TO A SURFACE OF CASTED ALLOY (주조 금속 표면과 열 중합 수지 표면간의 결합 강도에 관한 연구)

  • Lee, Yong-Seok;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.620-631
    • /
    • 1996
  • Bonding of resin to cast alloy has traditionally been provided by mechanical retention. But, chemical bonding methods such as silicoating, tin plating, heat treatment, application of 4-META adhesives, have been developed to overcome the problems of the mechanical bonding methods. Silicoating has been used availaby in fixed prosthodontics, but is also reported to be used in removable prosthodontics. The aim of this study is to measure the tensile bond strength between resin and metal, and compare the effect of the type of metal and the grain size of the aluminum oxide on the bond strength, after metal surface roughening, coating of the opaque resin, and curing of heat-curing resin were performed. The test groups were divided into 4 groups according to the cast alloys and the aluminum oxide particles used. Group 1 : Type 4 gold alloy(DM66) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 2 : Type 4 gold alloy(DM66) blasted with $$250{\mu}m\;Al_{2}O_3$$, Group 3 : Co-Cr alloy(Nobilium) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 4 : Co-Cr alloy(Nobilium) blasted with $$250{\mu}m\;Al_{2}O_3$$ * 10 test specimens were made on each group. The specimens were thermocycled, and Instron Universal testing machine was used to measure the tensile bond strength of the finished specimens. The results were as follows : 1. Bond strengths showed that the group of gold alloy blasted with $250{\mu}m$ aluminum oxide particle had higher bond strength, and the group of gold alloy blasted with $50{\mu}m$ aluminum oxide particles had lower bond strength than any of the other groups. 2. Gold alloy had significantly higher bond strength when blasted with $250{\mu}m$ aluminum oxide particles than $50{\mu}m$, but. Co-Cr alloy showed no statistically significant difference between the two particle sizes. 3. When blasted with $50{mu}m$ aluminum oxide particles, Co-Cr alloy showed significantly higher bond strength than gold alloy. And, when blasted with $250{\mu}m$ aluminum oxide particles, gold alloy had significantly higher bond strength than Co-Cr alloy. 4. On the examination of the fractured sites, only the group of Co-Cr alloy blasted with $50{\mu}m$ aluminum oxide particles showed a part of residual opaque resin, but all the samples of the other groups fractured between the resin and the metal.

  • PDF

An Investigation of Preferred Orientation and Microhardness of Nickel-Tin and Tin-Zinc Alloy Electrodeposits on Mild Steel (연강에서의 닉켈-주석과 주석-아연합금 전착층의 우성배향와 미소경도에 관한 연구)

  • Ahn, Deog-Su;Pyun, Su-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.13 no.3
    • /
    • pp.146-154
    • /
    • 1980
  • The effects of various electrodeposition conditions (deposition temperature and cathode current density) on preferred orientation and microhardness of electrodeposited Ni-Sn and Sn-Zn alloys were studied. At deposition temperatures from 25$^{\circ}$ to 95$^{\circ}C$ and constant cathode current density of 270 and 530 A/$m^2$ Ni-Sn and Sn-Zn were codeposited in chloride-fluoride acid and stannate-cyanide alkaline electrolyte bath respectively. Ni-Sn alloy deposited at temperatures from 25$^{\circ}$ to 35$^{\circ}C$ was composed of single phase of $Ni_3Sn_4$ with 73 wt.% Sn and the one deposited at temperatures from 45$^{\circ}$ to 95$^{\circ}C$ was made of multiphase mixture of NiSn, $Ni_3Sn_2$ and $Ni_3Sn_4$ with nearly equiatomic composition (65.5 wt.% Sn). The random orientation of thermody-namically metastable NiSn phase (hexagonal structure) predominated at deposition temperature range 25$^{\circ}$-45$^{\circ}C$, and the strong (110) preferred orientation was found at 65$^{\circ}$-85$^{\circ}C$ and then disappeared again at 95$^{\circ}C$. The microhardness of Ni-Sn deposits increased with deposition temperature up to 85$^{\circ}C$, and then decreased at constant cathode current density. The preferred orientation and the maximum microhardness were discussed in terms of lattice contractile stress which result from desorption of hydrogen atom absorbed in deposit lattice. The Sn content of Sn-Zn alloy deposits increased with deposition temperature up to 75$^{\circ}C$, and then decreased at constant cathode current density of 530 A/$m^2$. It also decreased with cathode current density up to 530 A/$m^2$, and then increased at constant deposition temperature of 25$^{\circ}C$. Sn-Zn alloy deposits were composed of two-phase mixture of ${beta}$-Sn and Zn. The preferred orientations of ${beta}$-Sn (tetragonal structure) changed with deposition temperature. The microhardness of Sn-Zn deposits decreased with deposition temperature. It also increased with cathode density up to 530 A/$m^2$, and then decreased at constant deposition temperature of 25$^{\circ}C$. The microhardness of Sn-Zn deposits was observed to be determinded more by the Sn content than by the preferred orientation.

  • PDF

EXPERIMENTAL STUDY ON THE DISSOLUTION COMPONENTS AND CORROSION PRODUCTS OF SEVERAL AMALGAMS IN ARTIFICIAL SALIVA (인공타액에서 수종 아말감의 부식시 용해성분 및 표면 부식 생성물에 관한 실험적 연구)

  • Cho, Seung-Joo;Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.1-26
    • /
    • 1994
  • The purpose of this study was to investigate the dissolution components during corrosion of amalgams and to identify surface corrosion products in the modified Fusayama artificial saliva. Four type of amalgam alloys were used: low copper lathe cut amalgam alloy (Cavex 68), low copper spherical amalgam alloy (Caulk Spherical Alloy), high copper admixed amalgam alloy (Dispersalloy) and high copper single composition amalgam alloy (Tytin). Each amalgam alloy and Hg were triturated according to the manufacturer's direction by means of mechanical amalgamator (Capmaster, S.S.White), and then the triturated mass was inserted into the cylindrical metal mold which was 10mm in diameter and 2.0mm in height and condensed with compression of 150kg/$cm^2$ using oil pressor. The specimens were removed from the mold and stored at room temperature for 7 days and cleansed with distiled water for 30 minutes in an ultrasonic cleaner. The specimens were immersed in the modified Fusayama artificial saliva for the periods of 1 month, 3 months and 6 months. The amounts of Hg, Cu, Sn and Zn dissolved from each amalgam specimen immersed in the artificial saliva for the periods of 1 month, 3 months and 6 months were measured using Inductivity Coupled Plasma Atomic Emission Spectrometry (ICPQ-1000, Shimadzu, Japan) and amount of Ag dissolved from amalgam specimen was measured using Atomic Absorption Spectrophotometry (Atomic Absorption/Flame emission spectrophotometer M-670, Shimadzu, Japan). A surface corrosion products of specimens were analysed using Electron Spectroscopy Chemical Analyser (ESCA PHI-558, PERKIN ELMER, U.S.A.). The secondary image and back scattered image of corroded surface of specimens was observed under the SEM, and the corroded surface of specimens was analysed with the EDX. The following results were obtained. 1. The dissolution amount of Cu was the most in high copper admixed amalgam(Dispersalloy) and the least in high copper single composition amalgam(Tytin). 2. Sn and Zn were dissolved during all the experiment periods, and dissolution amounts were decreased as the time elapsed. 3. Initial surface corrosion products were ZnO and SnO. 4. Corrosion of ${\gamma}$ and ${\gamma}_2$ phase in low copper amalgams was observed and Ag-Cu eutectic alloy phase was corroded in low copper spherical amalgam(Caulk Sperical Alloy). 5. Corrosion of ${\gamma}$ and $\eta$' phase in high copper amalgams was observed and Ag-Cu eutectic alloy phase was corroded in high copper admixed amalgam(Dispersalloy). 6. Sn-Cl was produced in the subsurface of low copper amalgams and high copper admixed amalgam.

  • PDF

Trend on the Recycling Technologies for Waste Magnesium by the Patent and Paper Analysis (특허(特許)와 논문(論文)으로 본 폐(廢)마그네슘 재활용(再活用) 기술(技術) 동향(動向))

  • Moon, Byoung-Gi;You, Bong-Sun;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.73-80
    • /
    • 2013
  • Metal prices are rapidly rising due to increasing demand of metals and limited available resources according to the industrial requirement. As a result, securing a stable supply of these metal resources has been recognized as a core element of national competitiveness and sustained economic growth. In the case of magnesium and its alloys which are entirely depending on import, low-grade magnesium scraps from end-of-life vehicles and 3C(Camera, Computer, Communication) parts and magnesium wastes such as sludge and dross generated during melting process are hardly recycled. Accordingly, the development and commercialization of recycling technology of low-grade magnesium scrap is desperately needed to improve efficiency of resource circulation and to establish the required proprietary of resource metal supply and demand. In this study, papers and patents on recycling technologies of waste magnesium were analyzed. The range of search was limited in the open patents of USA (US), European Union (EP), Japan (JP), Korea (KR) and SCI journals from 1974 to 2012. Patents and journals were collected using key-words searching and filtered by filtering criteria. The trends of the patents and journals was analyzed by the years, countries, companies, and technologies.

Characteristics of Sn-Ag-Cu-In Solder Alloys Incorporating Low Ag Content (소량의 Ag를 함유하는 Sn-Ag-Cu-In계 솔더 재료의 특성 분석)

  • Yu, A-Mi;Lee, Jong-Hyun;Lee, Chang-Woo;Kim, Mok-Soon;Kim, Jeong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.18-18
    • /
    • 2007
  • 지난 수년 동안 Sn-3.0Ag-0.5Cu 합금은 전자산업의 표준 무연솔더 조성으로 전자제품의 제작에 사용되어져 왔으며, 그 신뢰성도 충분히 검증되어 대표적인 무연 솔더 조성으로의 입지를 굳혀왔다. 그러나 전자제품의 mobile화에 따른 내충격 신뢰성에 대한 요구와 최근의 급격한 Ag 가격의 상승은 Ag 함량의 축소에 의한 원가절감을 요청하게 되었으며, 이에 따라 소량의 Ag를 함유하는 솔더 조성 개발에 대한 연구가 산업 현장을 중심으로 절실히 요청되고 있다. Sn-Ag-Cu의 3원계 함긍에서 Ag는 합금의 융점을 낮추고, 강도와 같은 합금의 기계적 특성을 증가시키는 한편, 모재에 대한 합금의 젖음성을 향상시키는데 필수적인 원소로 인식되고 있다. 따라서 Sn-Ag-Cu의 3원계 함금에서 Ag의 함량을 감소시키게 되면, 합금액 액상선 온도와 고상선 온도가 벌어져 pasty range(또는 mush zone)가 증가하게 되고, wettability도 감소하게 되어 솔더 합금으로서의 요구 특성을 많이 상실하게 된다. 또한 Ag 함량을 감소시키게 되면 합금의 elongation이 향상되면서 내 impact 수명이 향상되는 효과를 볼 수 있으나, 합금의 creep 특성 및 기계적인 강도는 감소하면서 열싸이클링 수명은 감소하는 경향을 나타내게 된다. 따라서 솔더 합금의 내 impact 수명과 열싸이클링 수명을 동시에 만족시키지 위해서는 Ag 함량을 최적화하기 위한 고려가 필요하며, 합금원소에 대한 연구가 요청된다고 하겠다. 한편 Ag의 함량을 3wt.% 이상으로 첨가할 경우에도 비교적 느린 응고 속도에서는 조대한 판상의 $Ag_3Sn$ 상을 형성하는 경향이 있어 외관 물량을 야기 시킬 가능성이 매우 커지는 현상도 보고되고 있다. 따라서 Ag의 첨가량을 최적화 하면서 솔더 재료로서의 특성을 계속적으로 유지하기 위해서는 제 4 원소의 함유가 필수적이라고 할 수 있다. 본 연구에서는 Sn-Ag-Cu계에 첨부하는 제 4원소로서 In을 선택하였다. 비록 In은 Ag보다 고가이기 때문에 산업적인 적용을 위한 솔더 합금 원소로는 거의 각광받지 못했으나, 본 연구의 결과로는 In은 매우 소량 첨가할 경우에도 Sn-Ag-Cu계 합금, 특히 소량의 Ag를 함유하는 Sn-Ag-Cu계 합금의 wettabilty와 기계적 특성 향상에 매우 효과적임을 알 수 있었다. 결론적으로 본 연구를 통해 구현된 Sn-Ag-Cu-In계 최적 솔더 조성의 경우 Sn-3.0Ag-0.5Cu의 표준 조성에 비하여 약 18%의 원자재 가격 절감을 도모할 수 있을 것으로 예상되는 한편. Sn-3.0Ag-0.5Cu에 유사하거나 우수한 wettability 특성을 나타내었고. Sn-1.0Ag-0.5Cu 또는 Sn-l.2Ag-0.5Cu-0.05Ni 조성보다는 월등히 우수한 wettability 특성을 나타내었다. 더구나 Sn-Ag-Cu-In계 최적 솔더 조성은 합금의 강도 저하는 최소화 시키면서 합금의 elongation은 극적으로 향상시켜 합금의 toughness 값이 매우 우수한 특성을 가짐을 알 수 있었다. 이렇게 우수한 toughness 값은 솔더 조인트의 대표적 신뢰성 요구 특성인 열싸이클링 수명과 내 impact 수명을 동시에 향상시킬 수 있을 것으로 예상된다. 요컨대 본 연구를 통해 구현된 Sn-Ag-Cu-In계 솔더 조성은 최적 솔더 조성에서 요구되는 4가지 인자, 즉, 저렴한 원재료 가격, 우수한 wettability 특성, 합금 자체의 높은 toughness, 안정하고 낮은 성장 속도의 계면 반응층 생성을 모두 만족시키는 특징을 가짐으로서 기존 무연솔더 조성의 새로운 대안으로 자리 잡을 것으로 기대된다.

  • PDF

Mechanism of Crack Formation in Pulse Nd YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • Ha, Yong Su;Jo, Chang Hyeon;Gang, Jeong Yun;Kim, Jong Do;Park, Hwa Sun
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.213-213
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)

Recrystallization TEP Behavior of Zr-based alloy by addition of Nb and Sn (Nb과 Sn 첨가에 따른 Zr 합금의 재결정 및 TEP 거동)

  • Jeong, Heung-Sik;O, Yeong-Min;Jeong, Yong-Hwan;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.104-114
    • /
    • 2001
  • To investigate the effects of the addition of Nb and Sn on the recrystallization of Zr- Sn-Nb alloys, both Vickers micro-hardness test and TEP measurement were carried out on cold-worked specimens annealed at various temperatures from $300^{\circ}C$ to 75$0^{\circ}C$. The microstructures of heat treated specimens were analyzed by optical microscope, SEM, and TEM. The study of microhardness and microstructures showed that both recrystallization process and grain growth were retarded as the activation energy was increased by the addition of Nb and Sn. Especially, the addition of Sn was more effective on retarding recrystallization. Precipitates were formed more easily when Nb was added because the solubility of Nb into Zr is lower than that of Sn. However, the recrystallization process was affected more by Sn than Nb because the strain field formed by substitutional Sn repressed the dislocation movement. TEP was increased due to the decrease of electron scattering as recovery and recrystallization were proceeded and saturated when the recrystallization completed. However, when precipitates formed, TEP was increased because the decrease of solute concentration near the precipitates caused the decrease of electron scattering.

  • PDF

Particle Size Effects of Devarda's Alloy on the Recovery of Nirate N Determined by the Steam Distillation Method (질산태 질소 정량을 위한 환원 증류법에서 Devarda's Alloy의 입자크기 및 함량이 미치는 영향)

  • Jung, Seok-Ho;Kwon, Hyun-Jae;Chung, Doug-Young;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.387-393
    • /
    • 2011
  • We analyzed the particle size distributions of three commercially available Devarda's alloy (DA) products, tested the nitrate recoveries of each particle size category, and examined the amounts of DA required for 100% recovery by varying $NO_3$-N concentration from 0.5 to 10 mg. We observed that use of DA coarser than 200 mesh resulted in poor analytical recovery (<80%). While the tested alloys were considered to be fine enough (>90% of the particles were less than 100 mesh), the recovery dramatically declined from 80% to 10% in a high concentration range (4 to 10 mg N). Satisfactory recovery was obtained by increasing the amount of finer DA (less than 300 or 450 mesh). However, there was no quantitative relationship between the amount of fine DA and nitrate recovered. Generally, the amount of nitrate reduced per unit DA decreased as the recovery efficiency declined. These results suggest that a sufficient amount of DA must be determined based on particle size distribution, and that treatment of at least two levels of DA and comparison of the subsequent change in nitrate recovery is required for soils containing high levels of nitrate. In addition, further studies are encouraged to account for the observed stoichiometric dis-equivalence of recovered nitrate N per unit mass of DA.

Correlation between Microstructure and Mechanical Properties of the Additive Manufactured H13 Tool Steel (적층 제조된 H13 공구강의 미세조직과 기계적 특성간의 상관관계)

  • An, Woojin;Park, Junhyeok;Lee, Jungsub;Choe, Jungho;Jung, Im Doo;Yu, Ji-Hun;Kim, Sangshik;Sung, Hyokyung
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.663-670
    • /
    • 2018
  • H13 tool steels are widely used as metallic mold materials due to their high hardness and thermal stability. Recently, many studies are undertaken to satisfy the demands for manufacturing the complex shape of the mold using a 3D printing technique. It is reported that the mechanical properties of 3D printed materials are lower than those of commercial forged alloys owing to micropores. In this study, we investigate the effect of microstructures and defects on mechanical properties in the 3D printed H13 tool steels. H13 tool steel is fabricated using a selective laser melting(SLM) process with a scan speed of 200 mm/s and a layer thickness of $25{\mu}m$. Microstructures are observed and porosities are measured by optical and scanning electron microscopy in the X-, Y-, and Z-directions with various the build heights. Tiny keyhole type pores are observed with a porosity of 0.4 %, which shows the lowest porosity in the center region. The measured Vickers hardness is around 550 HV and the yield and tensile strength are 1400 and 1700 MPa, respectively. The tensile properties are predicted using two empirical equations through the measured values of the Vickers hardness. The prediction of tensile strength has high accuracy with the experimental data of the 3D printed H13 tool steel. The effects of porosities and unmelted powders on mechanical properties are also elucidated by the metallic fractography analysis to understand tensile and fracture behavior.