Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.11.663

Correlation between Microstructure and Mechanical Properties of the Additive Manufactured H13 Tool Steel  

An, Woojin (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
Park, Junhyeok (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
Lee, Jungsub (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
Choe, Jungho (Powder & Ceramics Division, Korea Institute of Materials Science)
Jung, Im Doo (Powder & Ceramics Division, Korea Institute of Materials Science)
Yu, Ji-Hun (Powder & Ceramics Division, Korea Institute of Materials Science)
Kim, Sangshik (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
Sung, Hyokyung (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
Publication Information
Korean Journal of Materials Research / v.28, no.11, 2018 , pp. 663-670 More about this Journal
Abstract
H13 tool steels are widely used as metallic mold materials due to their high hardness and thermal stability. Recently, many studies are undertaken to satisfy the demands for manufacturing the complex shape of the mold using a 3D printing technique. It is reported that the mechanical properties of 3D printed materials are lower than those of commercial forged alloys owing to micropores. In this study, we investigate the effect of microstructures and defects on mechanical properties in the 3D printed H13 tool steels. H13 tool steel is fabricated using a selective laser melting(SLM) process with a scan speed of 200 mm/s and a layer thickness of $25{\mu}m$. Microstructures are observed and porosities are measured by optical and scanning electron microscopy in the X-, Y-, and Z-directions with various the build heights. Tiny keyhole type pores are observed with a porosity of 0.4 %, which shows the lowest porosity in the center region. The measured Vickers hardness is around 550 HV and the yield and tensile strength are 1400 and 1700 MPa, respectively. The tensile properties are predicted using two empirical equations through the measured values of the Vickers hardness. The prediction of tensile strength has high accuracy with the experimental data of the 3D printed H13 tool steel. The effects of porosities and unmelted powders on mechanical properties are also elucidated by the metallic fractography analysis to understand tensile and fracture behavior.
Keywords
additive manufacturing; 3D printing; selective laser melting; H13 tool steel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. E. Frazier, J. Mater. Eng. Perform., 23, 1917 (2014).   DOI
2 G. H. Shin, J. P. Choi, K. T. Kim, B. K. Kim and J. H. Yu, J. Korean Powder Metall. Inst., 24, 210 (2017).   DOI
3 L. Sheridan, O. Scott-Emuakpor, T. George and J. E. Gockel, Mater. Sci. Eng. A, 727, 170 (2018).   DOI
4 L. Ceschini, I. Boromei, A. Morri, S. Seifeddine and I. L. Svensson, Mater. Des., 36, 522 (2012).   DOI
5 C. Qiu, N. J. E. Adkins and M. M. Attallah, J. Mater. Sci. Eng. A, 578, 230 (2013).   DOI
6 H. Masuo, Y. Tanaka, S. Morokoshi, H. Yagura, T. Uchida, Y. Yamamoto and Y. Murakami, Int. J. fatigue, 117, 163 (2018).   DOI
7 X. Tan, Y. Kok, Y. J. Tan, M. Descoins, D. Mangelinck, S. B. Tor, K. F. Leong and C.K. Chua, Acta Mater., 97, 1 (2015).   DOI
8 J. Cahoon, Metall. Mater. Trans. B, 3, 3040 (1972).   DOI
9 J. Mazumder, J. Choi, K. Nagarathnam, J. Koch and D. Hetzner, JOM, 49, 55 (1997).
10 W. Lu, Y. Shi, X. Li and Y. Lei, J. Mater. Eng. Perform., 22, 1694 (2013).   DOI
11 R. Rai, J. W. Elmer, T. A. Palmer and T. DebRoy, J. Phys. D: Appl. Phys., 40, 5753 (2007).   DOI
12 R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu and W. Jiang, Appl. Surf. Sci., 256, 4350 (2010).   DOI
13 H. Zhao and T. DebRoy, J. Appl. Phys., 93, 10089 (2003).   DOI
14 T. LeBrun, T. Nakamoto, K. Horikawa and H. Kobayashi, Mater. Des., 81, 44 (2015).   DOI
15 B.-K. Jang and H. Matsubara, Mater. Lett., 59, 3462 (2005).   DOI
16 M. Simoelli, Y. Y. Tse and C. Tuck, Mater. Sci. Eng. A, 616, 1 (2014).   DOI
17 Q. Zhang, Z. Zuo and J. Liu, Eng. Fail. Anal., 48, 11 (2015).   DOI
18 J. Choe, J. Yun, D.-Y. Yang, S. Yang, J.-H. Yu, C.-W. Lee and Y.-J. Kim, J. Korean Powder Metall. Inst., 24, 187 (2017).   DOI
19 H. Asgari and M. Mohammadi, Mater. Sci. Eng. A, 709, 82 (2018).   DOI
20 P. Krakhmalev, G. Fredriksson, I. Yadroitsava, N. Kazantseva, A. D. Plessis and I. Yadroitsev, Phys. Procedia, 83, 778 (2016).   DOI
21 D. Gu and Y. Shen, Mater. Des., 30, 2903 (2009).   DOI
22 D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, Acta Mater., 117, 371 (2016).   DOI
23 J.-H. Lee, J.-H. Jang, B.-D. Joo, Y.-M. Son and Y.-H. Moon, Trans. Nonferrous Met. Soc. China, 19, 917 (2009).   DOI
24 M. Koneshlou, K. M. Asl and F. Khomamizadeh, Cryogenics, 51, 55 (2011).   DOI
25 J. Yun, J. Choe, H. Lee, K.-B. Kim, S. Yang, D.-Y. Yang, Y.-J. Kim, C.-W. Lee and J.-H. Yu, J. Korean Powder Metall. Inst., 24, 195 (2017).   DOI