• 제목/요약/키워드: Alloy semiconductor

검색결과 91건 처리시간 0.023초

혼합물반도체에서 단위격자 크기 설정에 따른 비극성 Optical 포논산란에 대한 연구 (Study of the Non-polar Optical Phonon Scattering According to the Size of Unit Cell in an Alloy Semiconductor)

  • 천대명;김태현;전상국
    • 한국전기전자재료학회논문지
    • /
    • 제24권10호
    • /
    • pp.784-789
    • /
    • 2011
  • A linear spring model, where the interactions among atoms are assumed to be isotropic and elastic, is employed for the study of non-polar optical phonon scattering in the valence band of alloy semiconductors. The force equations of n atoms are used in the spring model for the consideration of the random distribution of constituent atoms in an alloy semiconductor. When the number of atoms in a unit cell is assumed to be two based on the experimental result, the optical deformation potent is valid for compound semiconductors as well as alloy semiconductors.

팔라듐 합금 수소분리막의 내구성 향상 (Improvement in Long-term Stability of Pd Alloy Hydrogen Separation Membranes)

  • 김창현;이준형;조성태;김동원
    • 한국표면공학회지
    • /
    • 제48권1호
    • /
    • pp.11-22
    • /
    • 2015
  • Pd alloy hydrogen membranes for hydrogen purification and separation need thermal stability at high temperature for commercial applications. Intermetallic diffusion between the Pd alloy film and the porous metal support gives rise to serious problems in long-term stability of Pd alloy membranes. Ceramic barriers are widely used to prevent the intermetallic diffusion from the porous metal support. However, these layers result in poor adhesion at the interface between film and barrier because of the fundamentally poor chemical affinity and a large thermal stress. In this study, we developed Pd alloy membranes having a dense microstructure and saturated composition on modified metal supports by advanced DC magnetron sputtering and heat treatment for enhanced thermal stability. Experimental results showed that Pd-Cu and Pd-Ag alloy membranes had considerably enhanced long-term stability owing to stable, dense alloy film microstructure and saturated composition, effective diffusion barrier, and good adhesive interface layer.

Semiconductor Behavior of Passive Films Formed on Cr with Various Additive Elements

  • Tsuchiya, Hiroaki;Fujimoto, Shinji;Shibata, Toshio
    • Corrosion Science and Technology
    • /
    • 제2권1호
    • /
    • pp.7-11
    • /
    • 2003
  • Photoelectrochemical response and electrochemical impedance behavior was investigated for passive film formed on sputter-deposited Cr alloy in $0.1kmol{\cdot}m^{-3}$. Photoelectrochemical action spectrum could be separated into two components, which were considered to be derived from $Cr_2O_3$ ($E_g\sim3.6eV$) and $ Cr(OH)_3 $ ($E_g\sim2.5eV$). The band gap energy, $E_g$, of each component was almost constant for various applied potentials. polarization periods and alloying additives. The photoelectrochemical response showed negative photo current for most potentials in the passive region. Therefore, the photo current apparently exhibited p-typesemiconductor behavior. On the other hand, Mort-Schottky plot of the capacitance showed positive slope, which means that passive film formed on Cr alloy has n-type semiconductor property. These apparently conflicting results are rationally explained assuming that the passive film on Cr alloy formed in the acid solution has n-type semiconductor property with a fairly deep donor level in the band gap and forms an accumulation layer in the most of potential region in the passive state.

전기도금된 Cu-Sn과 Ni preplated frame의 특성 비교 (Comparison of the Characteristics of Cu-Sn and Ni Pre-Plated Frames Prepared by Electro-Plating)

  • 이대훈;장태석;홍순성;이지원;양형우;한병근
    • 한국표면공학회지
    • /
    • 제39권6호
    • /
    • pp.276-281
    • /
    • 2006
  • In order to improve the performance of PPFs (Pre-Plated Frames), a PPF that employed a Cu-Sn alloy instead of conventionally used Ni was developed and then its properties were investigated. It was found that the electoplated Cu-Sn alloy layer was a mixture of uniformly distributed fine crystallites, resulting In better wettability and crack resistance than those of Ni PPF. Moreover, as in Cu/Ni/Pd/Au PPF, migration of copper atoms from the base metal to the top of the Cu/Cu-Sn/Pd/Au PPF surface was not found although the Cu-Sn layer itself contained considerable amount of copper. It was expected that, by using the newly developed Cu-Sn PPF, any possible heat generation and signal interrupt caused by an external electro-magnetic field could be reduced because the Cu-Sn layer was paramagnetic, i.e., nonmagnetic.

$A_{1-x}B_{x}$ 혼합물반도체에서 원자들의 혼합형태에 따른 비극성 Optical 포논산란에 대한 연구 (Study on The Non-polar Optical Phonon Scattering According to The Mixture of Atoms in a $A_{1-x}B_{x}$ Alloy semiconductor)

  • 박일수;전상국
    • 한국전기전자재료학회논문지
    • /
    • 제14권8호
    • /
    • pp.611-617
    • /
    • 2001
  • The non-polar optical phonon scattering in the valence band depends on the masses, ratios, and types of mixtures of constituent atoms. Therefore, the random distribution of atoms in alloy semiconductors should be considered in the analysis of scattering mechanisms. For this purpose, the force equations of n atoms in a unit cell are expressed in a n x n matrix form to obtain the angular frequencies due to the acoustic and non-polar optical phonons. And, n is then assumed to be infinity. When this work is compared with other results published elsewhere, it is concluded that the independence of atomic displacement or amplitude of oscillation as ell as the infinite number of atoms in a unit cell must be taken into account for the random distribution of atoms in alloy semiconductors.

  • PDF

반도체금형에서 부속부품의 재료선정 및 개선과 제작에 관한 연구 (A study on material selection for semiconductor die parts and on their modification and manufacture)

  • 김세환;최계광
    • Design & Manufacturing
    • /
    • 제8권1호
    • /
    • pp.27-30
    • /
    • 2014
  • Alloy tool steel such as SKD11 and SKD61 or high speed tool like SKH51 are used as materials for semiconductor dies. Cavities, curl blocks, pot blocks and housings are made from those materials. To make those parts from alloy tool steel or high speed tool, one utilizes discharge machining, and mechanical machining including machining center, milling, drilling, forming grinding and others. In the process of cutting machining and polishing, the die materials become unsuitable for machining owing to bubbles and foreign substances in them, which hinders production process. Therefore, this study focuses on die material selection criteria, and on analysis and comparison of material characteristics to help companies to solve their problems, make die manufacture less burdensome and extend die life.

  • PDF

널은 띠간격 묽은 자성반도체 CuAl1-xMnxO2 세라믹스의 구조 및 전자기 특성 (Structural, Electrical and Magnetic Properties of Wide Bandgap Diluted Magnetic Semiconductor CuAl1-xMnxO2 Ceramics)

  • 지성화;김효진
    • 한국재료학회지
    • /
    • 제14권8호
    • /
    • pp.595-599
    • /
    • 2004
  • We investigated the structural, electrical and magnetic properties of Mn-doped $CuAlO_2$ delafossite ceramics ($CuAl_{1-x}Mn_{x}O_2,\;0\le\;x\;\le0.05$), synthesized by solid-state reaction method in an air atmosphere at a sintering temperature of $1150^{\circ}C$. The solubility limit of Mn ions in delafossite $CuAlO_2$ was found to be as low as about 3 $mol\%$. Positive Hall coefficient and the temperature dependence of conductivity established that non-doped $CuAlO_2$ ceramic is a variable-range hopping p-type semiconductor. It was found that the Mn-doping in $CuAlO_2$ rapidly reduced the hole concentration and conductivity, indicating compensation of free holes. The analysis of the magnetization data provided an evidence that antiferromagnetic superexchange interaction is the dominant mechanism of the exchange coupling between Mn ions in $CuAl_{1-x}Mn_{x}O$ alloy, leading to an almost paramagnetic behavior in this alloy.

Synthesis and Oxidation Behavior of Pd-Ir@CeO2 Core-shell Nanoparticles for Hydrogen Gas Sensor

  • Gi-Seung Shin;Dong-Seog Kim;Tuong Van Tran;Geun-Jae Oh;Seok-Yong Hong;Ho-Geun Song;Yeon-Tae Yu
    • 센서학회지
    • /
    • 제33권5호
    • /
    • pp.288-297
    • /
    • 2024
  • Currently, numerous studies are being conducted on metal oxide semiconductor (MOS) gas sensors for hydrogen detection, using Palladium (Pd) and Pd-based alloy nanoparticles (NPs) owing to their hydrogen absorption ability. Furthermore, several studies have reported that Pd-Iridium (Ir) alloys possess high hydrogen absorption capabilities in their bulk state. However, Ir growth is limited to above 2 nm and it does not mix extensively with other metals. Furthermore, as the hydrogen absorption capacity decreases with the reduction in particle size, it is necessary to synthesize nanoparticles of an appropriate size. Therefore, the synthesis of Pd-Ir alloy NPs larger than 10 nm is challenging. In this study, we report the synthesis of Pd-Ir NPs with an average diameter of 19 nm using a hydrothermal technique for the first time and fabricated Pd-Ir alloy NPs through calcination at 500℃ in Ar and air. To confirm alloy formation and oxidation behavior, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were performed. In addition, we synthesized Pd-Ir@CeO2 core-shell nanoparticles (CSNPs) as hydrogen gas-sensing materials. The Pd-Ir core was partially oxidized during heat treatment at 500℃ in air, and Pd-Ir@CeO2 CSNPs were finally changed into Pd-Ir(alloy)/PdO-IrO2@CeO2 CSNPs, which exhibited higher sensitivity and selectivity toward H2 gas compared to totally oxidized PdO-IrO2@CeO2 CSNPs and pure CeO2 NPs. The enhanced gas-sensing performance was attributed to the hydrogen absorption effect of the Pd-Ir(alloy) NPs.

스퍼터 공정변수가 팔라듐 합금 수소분리막의 특성에 미치는 영향 (The Effect of Sputtering Process Variables on the Properties of Pd Alloy Hydrogen Separation Membranes)

  • 한재윤;주새롬;이준형;박동건;김동원
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.248-257
    • /
    • 2013
  • It is generally recognized that thin Pd-Cu alloy films fabricated by sputtering show a wide range of microstructures and properties, both of which are highly dependent on the sputtering conditions. In view of this, the present study aims to investigate the relationship between the performance of hydrogen separation membranes and the microstructure of Pd alloy films depending on sputtering deposition conditions such as substrate temperature, working pressure, and DC power. We fabricated thin and dense Pd-Cu alloy membranes by the micro-polishing of porous Ni support, an advanced Pd-Cu sputtered multi-deposition under the conditions of high substrate temperature / low working pressure / high DC power, and a followed by Cu-reflow heat-treatment. The result of a hydrogen permeation test indicated that the selectivity for $H_2/N_2$ was infinite because of the void-free and dense surface of the Pd alloy membranes, and the hydrogen permeability was 10.5 $ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ for a 6 ${\mu}m$ membrane thickness.