• Title/Summary/Keyword: Alloy ratio

Search Result 769, Processing Time 0.03 seconds

Process Optimization for Co-based Self-flux Alloy Coating by Taguchi Method (다구찌 기법에 의한 코발트기 자융성합금 용사코팅의 최적공정 설계)

  • Lee, Jae-Hong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.108-114
    • /
    • 2013
  • This paper describes process optimization for thermal-sprayed Co-based self-flux alloy coating by Taguchi method. Co-based self-flux alloy coatings were fabricated according to $L_9(3^4)$ orthogonal array using flame spray process. Hardness test and wear test were performed, the results were analyzed by analysis of variance(ANOVA) considering a multi response signal to noise ratio(MRSN). From the results of ANOVA, the optimal combination of the flame spray parameters on Co-based self-flux alloy coating could be predicted. The calculated hardness and wear rate of the coatings by ANOVA were found to be close to that of confirmation experimental result.

Composition, preferred orientation and magnetic properties of Ni-Fe-Co alloy electrodeposits (Ni-Fe-Co 박막도금층의 조성, 우선배향 및 자기적 성질)

  • 예길촌;김선윤;문근호;김용웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.6
    • /
    • pp.352-360
    • /
    • 1995
  • The effect of electrolysis conditions on the composition, the magnetic properties and the preferred orientation of Ni-Fe-Co alloy deposits was investigated using the sulfate-chloride bath paddle agitated. Cathode current efficiency increases with the current density, showing the different tendency of the variation from that of the Ni-Fe electrodeposits. The Co content of the deposits decreases with increasing current density, while the content of Ni and Fe is shown to be minimum or maximum at 3A/$dm^2$ respectively. The Ni/Fe ratio of the alloy deposits is lower than that of Ni-Fe deposits. The coercive force($H_c$) of the deposits increases with the Co content in deposit, showing the relatively low value in the range of 1.8~5.0Wt.% Co. The anisotropy field ($H_k$) of the deposits is higher than that of Ni-Fe alloy deposits, The preferred orientation of the deposits is generally (200), but the orientation factor(R) changes with both the increase of current density and the magnetic field applied during deposition.

  • PDF

Mechanical properties and formability of asymmetrically rolled aluminum alloy sheet (무윤활 압연한 알루미늄 판재의 기계적 특성과 성형성)

  • Akramov, S.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.429-431
    • /
    • 2009
  • Drawability and other mechanical properties of sheet metals are strongly dependent on their crystallographic orientations. In this paper the formability of the AA 5052 Al alloy sheets was investigated after asymmetric rolling and subsequent heat treatment. In most cases, after asymmetric rolling specimens showed a fine grain size and subsequent heat treated specimens showed that the ND // <111> texture component were observed. The anisotropy of formability is often described by the plastic strain ratios (r-value) as a function of the angle to the rolling direction in sheet metal. For a good formability, a high r-value is required in sheet metals. In the asymmetry rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios have been investigated in this study, The plastic strain ratios of the asymmetry rolled and subsequent heat treated AA 5052 Al alloy sheets were higher than those of the original Al sheets. These could be related to the formation of ND // <111> texture components through asymmetric rolling in Al sheet.

  • PDF

Magnetic and Ordering Behavior of Nb-doped FePt Alloy Films

  • Kim, Min-Kyu;Lee, Seong-Rae
    • Journal of Magnetics
    • /
    • v.10 no.1
    • /
    • pp.28-32
    • /
    • 2005
  • The magnetic properties and ordering behavior of Nb-doped FePt alloy films prepared by dc-magnetron sputtering were investigated. It was found that Nb addition retarded the ordering reaction from the disordered face-centered-cubic (fcc) Al phase to the ordered face-centered-tetragonal (fct) L10 phase. The tetragonality (c/a ratio) of the ordered fct L10 phase increased with the Nb concentration. Nb addition hampered c-axis contraction during ordering, probably because the larger Nb atoms occupy Pt sites. Consequently, the coercivity and magnetocrystalline anisotropic energy of Nb-doped FePt alloy films are lower than those of un-doped FePt film under equivalent annealing conditions.

Electrocatalytic Reduction of Carbon Dioxide on Sn-Pb Alloy Electrodes

  • Choi, Song Yi;Jeong, Soon Kwan;Park, Ki Tae
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.231-236
    • /
    • 2016
  • Electrocatalytic reduction can produce useful chemicals and fuels such as carbon monoxide, methane, formate, aldehydes, and alcohols using carbon dioxide, the green house gas, as a reactant through the supply of electrical energy. In this study, tin-lead (Sn-Pb) alloy electrodes are fabricated by electrodeposition on a carbon paper with different alloy composition and used as cathode for electrocatalytic reduction of carbon dioxide into formate in an aqueous system. The prepared electrodes are measured by Faradaic efficiency and partial current density for formate production. Electrocatalytic reduction experiments are carried out at -1.8 V (vs. Ag/AgCl) using H-type cell under ambient temperature and pressure and the gas and liquid products are analyzed by gas chromatograph and liquid chromatograph, respectively. As results, the Sn-Pb electrodes show higher Faradaic efficiency and partial current density than the single metal electrode. The Sn-Pb alloy electrode which have Sn:Pb molar ratio=2:1, shows the highest Faradaic efficiency of 88.7%.

Effect of Flux on the Recovery Behavior of Valuable Metals during the Melting Process of Aluminum Can Scrap

  • Chulwoong Han;Yong Hwan Kim;Dae Geun Kim;Man seung Lee
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.4
    • /
    • pp.1023-1027
    • /
    • 2021
  • This study investigated the effect of flux type and amounts on recovery behavior of aluminum alloy during the melting process of Al can scrap. The heat treatment was conducted to remove the coating layer on the surface of can scrap at 500℃ for 30 min. The molten metal treatment of the scrap was performed at 750℃ in a high-frequency induction furnace with different flux types and amounts. It was observed that the optimum condition for recovery of Al alloy was to add about 3 wt.% flux with a salt and MgCl2 mixing ratio of 70:30 during melting process. The mechanical properties of recovered Al alloy were about 254.8 MPa, which is similar to that of the virgin Al5083 alloy.

The study on the scattering ratio at the edge of the block according to the increasing block thickness in electron therapy (전자선 치료 시 차폐블록 두께 변화에 따른 블록 주변 선량에 관한 연구)

  • Park, Zi On;Gwak, Geun Tak;Park, Ju Kyeong;Lee, Seung Hun;Kim, Yang Su;Kim, Jung Soo;Kwon, Hyoung Cheol;Lee, Sun Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • Purpose: The purpose is to clarify the effect of additional scattering ratio on the edge of the block according to the increasing block thickness with low melting point lead alloy and pure lead in electron beam therapy. Methods and materials: $10{\times}10cm^2$ Shielding blocks made of low melting point lead alloy and pure lead were fabricated to shield mold frame half of applicator. Block thickness was 3, 5, 10, 15, 20 (mm) for each material. The common irradiation conditions were set at 6 MeV energy, 300 MU / Min dose rate, gantry angle of $0^{\circ}$, and dose of 100 MU. The relative scattering ratio with increasing block thickness was measured with a parallel plate type ion chamber(Exradin P11) and phantom(RW3) by varying the position of the shielding block(cone and on the phantom), the position of the measuring point(surface ans depth of $D_{max}$), and the block material(lead alloy and pure lead). Results : When (depth of measurement / block position / block material) was (surface / applicator / pure lead), the relative value(scattering ratio) was 15.33 nC(+0.33 %), 15.28 nC(0 %), 15.08 nC(-1.31 %), 15.05 nC(-1.51 %), 15.07 nC(-1.37 %) as the block thickness increased in order of 3, 5, 10, 15, 20 (mm) respectively. When it was (surface / applicator / alloy lead), the relative value(scattering ratio) was 15.19 nC(-0.59 %), 15.25 nC(-0.20 %), 15.15 nC(-0.85 %), 14.96 nC(-2.09 %), 15.15 nC(-0.85 %) respectively. When it was (surface / phantom / pure lead), the relative value(scattering ratio) was 15.62 nC(+2.23 %), 15.59 nC(+2.03 %), 15.53 nC(+1.67 %), 15.48 nC(+1.31 %), 15.34 nC(+0.39 %) respectively. When it was (surface / phantom / alloy lead), the relative value(scattering ratio) was 15.56 nC(+1.83 %), 15.55 nC(+1.77 %), 15.51 nC(+1.51 %), 15.42 nC(+0.92 %), 15.39 nC(+0.72 %) respectively. When it was (depth of $D_{max}$ / applicator / pure lead), the relative value(scattering ratio) was 16.70 nC(-10.87 %), 16.84 nC(-10.12 %), 16.72 nC(-10.78 %), 16.88 nC(-9.93 %), 16.90 nC(-9.82 %) respectively. When it was (depth of $D_{max}$ / applicator / alloy lead), the relative value(scattering ratio) was 16.83 nC(-10.19 %), 17.12 nC(-8.64 %), 16.89 nC(-9.87 %), 16.77 nC(-10.51 %), 16.52 nC(-11.85 %) respectively. When it was (depth of $D_{max}$ / phantom / pure lead), the relative value(scattering ratio) was 17.41 nC(-7.10 %), 17.45 nC(-6.88 %), 17.34 nC(-7.47 %), 17.42 nC(-7.04 %), 17.25 nC(-7.95 %) respectively. When it was (depth of $D_{max}$ / phantom / alloy lead), the relative value(scattering ratio) was 17.45 nC(-6.88 %), 17.44 nC(-6.94 %), 17.47 nC(-6.78 %), 17.43 nC(-6.99 %), 17.35 nC(-7.42 %) respectively. Conclusions: When performing electron therapy using a shielding block, the block position should be inserted applicator rather than the patient's body surface. The block thickness should be made to the minimum appropriate shielding thickness of each corresponding using energy. Also it is useful that the treatment should be performed considering the influence of scattering dose varying with distance from the edge of block.

Influence of the Magnesium Content on the Explosion Properties of Mg-Al Alloy Dusts (Mg-Al합금 분진의 폭발특성에 미치는 마그네슘 성분의 영향)

  • Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.1-6
    • /
    • 2012
  • Using the Siwek 20 L spherical explosion vessel, the explosion properties have been examined to understand the influence of magnesium content in Mg-Al alloy dusts with different concentration. For this purpose, the Mg-Al alloy dusts (volume mean diameter : $151{\sim}160{\mu}m$) with magnesium content ratio were used. As the results, the increase of Mg content in Mg-Al alloy causes an decreased minimum explosion concentration and an increased maximum explosion pressure. Also the maximum explosion pressure and maximum rate of pressure rise in Mg-Al alloy dusts mainly depended on the dust concentrations. However, for the explosion index (Kst) of Mg-Al (40:60 wt%), Mg-Al (50:50 wt%) and Mg-Al (60:40 wt%), it was founded to increase the Kst with increasing of magnesium content ratio.