• Title/Summary/Keyword: Alloy element

Search Result 830, Processing Time 0.028 seconds

Microstructural Characterization of $Al_3$(${Nb_{1-x}}{Zn_x}$) Alloy Prepared by Elemental Powder and Intermetallic Powder (원료분말과 금속간화합물 분말로 기계적 합금화한 $Al_3$(${Nb_{1-x}}{Zn_x}$) 합금의 미세구조특성)

  • Lee, Gwang-Min;Lee, Ji-Seong;An, In-Seop
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.345-353
    • /
    • 2001
  • The present study was carried out to investigate the effect of zirconium addition to $Al_3$Nb intermetallic on the crystal structural modification and microstructural characterization of $Al_3$Nb intermetallic. Elemental Al, Nb, Zr powders and arc melted $Al_3$Nb and $Al_3$Zr intermetallic mixed powders were used as starting materials. MA was carried out in an attritor rotated with 300 rpm for 20 hours. The behavior of MA between two starting materials was some-what different in which the value of internal strain of the elemental powders was higher than that of the intermetallic powder. The intermetallic powder was much more disintegrated during the MA processing. In the case of the elemental powders, AlNb$_2$ phase were transformed to Al(Nb.Zr)$_2$ as a result of ternary addition of Zr element. With the successive heat treatment at 873K for 2 hours, the Al(Nb.Zr)$_2$ phase was transformed to more stable $Al_3$(Nb.Zr) phase. This transformation was clearly confirmed by the identification of X-ray peak position shift. On the other hand, in the carte of the intermetallic powder, there was no evidence of phase transformation to other ternary intermetallic compounds or amorphous phases, even in the case of additional heat treatment. However, nano-sized intermetallic with $Al_3$Nb and $Al_3$Zr were just well distributed instead of phase transformation.

  • PDF

Fabrication and characterization of Sn-3.0Ag-0.5Cu, Sn-0.7Cu and Sn-0.3Ag-0.5Cu alloys (Sn-3.0Ag-0.5Cu, Sn-0.7Cu 및 Sn-0.3Ag-0.5Cu 합금의 제조 및 특성평가)

  • Lee, Jung-Il;Paeng, Jong Min;Cho, Hyun Su;Yang, Su Min;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.130-134
    • /
    • 2018
  • In the past few years, various solder compositions have been a representative material to electronic packages and surface mount technology industries as a replacement of Pb-base solder alloy. Therefore, extensive studies on process and/or reliability related with the low Ag composition have been reported because of recent rapid rise in Ag price. In this study, Sn-3.0Ag-0.5Cu, Sn-0.7Cu and Sn-0.3Ag-0.5Cu solder bar samples were fabricated by melting of Sn, Ag and Cu metal powders. Crystal structure and element concentration were analyzed by XRD, XRF, optical microscope, FE-SEM and EDS. The fabricated solder samples were composed of ${\beta}-Sn$, ${\varepsilon}-Ag_3Sn$ and ${\eta}-Cu_6Sn_5$ phases.

Critical Elastic Buckling Load Investigation of Aluminium Alloy A6082-T6 Square plate Subjected to Patch Loading (패치 로딩을 받는 알루미늄 합금 A6082-T6 사각형 판의 임계 탄성좌굴하중 검토)

  • Oh, Young-Cheol;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.451-460
    • /
    • 2014
  • In this paper, we examined the problem of the structural stability according to the patch load of a rectangular plate that reflects the material properties of A6082-T6 is used primarily for marine plant structure. it applied to the four patch loading shapes, the effect of aspect ratio, a boundary condition and calculated the critical elastic buckling load. Calculating the critical elastic buckling load, During the eigenvalue buckling analysis it is applied to the shell181 as 4 node shell element. when the plate subjected to patch loading compare to the plate under a uniform axial compression load, it is possible observed to occur the different elastic buckling behaviour and it could be confirmed that it is affected significantly on a variable position and type of loadings, such as the effect of the aspect ratio. Also, Critical elastic buckling load according to th patch loading type in simply supported rectangular plate a/b=1.0, ${\gamma}b$=200mm are calculated 67%(Loading type I), 119 %(Loading type II), 76 %(Loading type III), 160 %(Loading type IV), respectively. Loading type I and III could be determined with the strong elastic buckling behavior much more than Loading type II and IV.

THE STUDY ABOUT THE MARGINAL FIT OF THE CASTING TITANIUM AND MACHINE-MILLED TITANIUM COPINGS (주조티타늄과 기계절삭티타늄 코핑의 변연적합성에 관한 연구)

  • Oh Su-Yeon;Vang Mong-Sook;Yang Hong-So;Park Sang-Won;Park Ha-Ok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.20-28
    • /
    • 2006
  • Statement of problem: The titanium has advantages of a high biocompatibility, a corrosion resistence, low density, and cheep price, so it is focused as a substituted alloy But it is quite difficult to cast with the tranditional method due to the high melting point, reacivity with element at, elevated temperature. By using the CAD-CAM system for the crown construction, it is possible to reduce the errors while proceeding the wax-up, investing, and casting procedure Purpose: The purposes of this study were to measure the marginal adaptation of the casting titanium coping and machine-milled titanium coping according to the casting methods and the marginal configurations. Material and method: The marginal configurations were used chamfer shoulder, and beveled shoulder. The total 30 copings were used, and these are divided into 6 groups according to the manufacturing method and marginal configuration. The gap between margin of the model and the restoration was measured with 3-dimensional measuring microscope. Results: The following results were obtained; 1. casting gold coping demonstrated the best marginal seal, followed by casting titanium coping finally machine-milled titanium copings. 2. In casting titanium coping, chamfer demonstrated the best marginal seal, followed by shoulder and beveled shoulder. There was no significantly difference in shoulder and beveled shoulder. But all margin form has clinically acceptable 3. In machine-milled titanium copings, chamfer demonstrated the best marginal seal, followed by shoulder and beveled shoulder. Beveled shoulder show large and uneven marginal gap Conclusions: Above result revealed that marginal adaptation of the titanim coping is avail able in the clinical range, it can be used as an alternative metal and it is prefered especially in chamfer or shoulder margin during implant superstructure fabrication. But there should be more research on machine-milled titanium in order to use it in the clinics.

Effect of Additional Elements on Efficiency of Al and Zn Sacrificial Anode for Naval Vessels (함정용 Al 및 Zn 희생양극의 효율에 미치는 첨가원소 영향)

  • Choi, Woo-Suk;Park, Kyung-Chul;Kim, Byeong-Ho
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.277-283
    • /
    • 2015
  • MS(Mild Steel), HTS(High Tensile Steel), HYS(High Yield Steel), AL(Aluminum Alloy) and Composite Materials are used for vessels. Steel Materials are mostly used for vessels because body of a ship have to perform the basic functions such as watertight, preserving the strength and supporting the equipments. The vessels primarily carry out a mission at ocean, so that body of a ship is necessarily rusted. There are several methods to protect the corrosion of vessels such as painting, SACP(sacrificial anode cathodic protection) and ICCP(impressed current cathodic protection). For the sacrificial anode cathodic protection, Al and Zn alloys are normally used. Heavy metals are added to the Al and Zn Alloys for improving the corrosion properties but they are so harmful to the human and environment. Therefore, the use of these heavy metals is strictly regulated in the world. In this paper, Al and Zn Alloys are made by adding the trace elements(Ma, Ca, Ce and Sn) which is not harmful to the human and environment. SEM, XRD, Potentiodynamic Polarization test and Current Efficiency test are conducted for evaluation of Al and Zn Alloys. As a result of the experiment, Al-3Zn-0.6Sn and Zn-3Sn Alloys are more efficient than other Alloys.

Effect of Brine Treatment Applied in the Manufacture of Traditional Forged High Tin Bronzes of Korea (한국의 방짜유기에 가해지는 염수처리의 효과에 관한 연구)

  • Lee, Jae-Sung;Jeon, Ik-Hwan;Kwak, Seok-Chul;Park, Jang-Sik
    • Journal of Conservation Science
    • /
    • v.28 no.4
    • /
    • pp.403-410
    • /
    • 2012
  • The brine treatment applied during the fabrication of forged high tin bronze objects is considered effective at the removal of surface oxide layers developed at elevated temperatures. There is not much information, however, available for the understanding of its exact effect and purpose. This work performed laboratory experiments to characterize the effect brine treatments produce on the surface of bronze objects during fabrication. Specimens were first made in the bronze shop of the Yongin folk village under varying conditions of brine treatments, and the results obtained were then used in the following laboratory experiments where the effect of brine treatments were investigated in terms of brine concentrations, alloy compositions and thermo-mechanical treatments. The results show that oxide layers generated at high temperature are easily removed by the brine treatment. It was found that the element, chlorine, played a key role in the removal of such oxide layers as opposed to the other constituent of the brine, sodium, makes no notable contribution. In bronze alloys containing 22% tin, this brine effect is obtained regardless of the application of forging as long as the brine concentration is over 0.5% based on weight. In alloys containing lead, however, no brine effect is observed due to the molten lead that emerges from inside the hot bronze specimen and forms a thin layer on its surface.

A Study on the Quantitative Analysis of Portable XRF for the Components Analysis of Metal Cultural Heritage (금속문화재 성분분석을 위한 휴대용 XRF 정량분석법 연구)

  • Lim, So-Mang;Kwon, Young-Suk;Cho, Young-Rae;Chung, Won-Sub
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.451-463
    • /
    • 2021
  • In this study we conducted component analyses of portable XRF detectors using four Au-Cu alloy standard samples to improve their accuracy by drawing up a calibration curve based on ICP-OES standard values. The portable XRF analysis found absolute errors of 0.3 to 3.7 wt% for Au and 0.2 to 8.2 wt% for Cu, confirming that the error range and standard deviation differed from one detector to another. Furthermore, the calibration curve improved their accuracy, such that the relative error rates of Au and Cu decreased from 9.8% and 14% to 3.5% and 3.7%, respectively. Accordingly, an experiment to confirm the calibration curve was conducted using unknown samples, finding that the measured values of the unknown samples fell on the calibration curve. Therefore, to accurately analyze the components of metal cultural heritage items, it is necessary to prepare a calibration curve for each element after checking whether the detector is suitable for the artifact.

FEA(Finite Element Analysis) Study for Electronic Hydrogen Regulator of Confidentiality Improvement (전자식 수소레귤레이터 기밀성 향상을 위한 FEA 연구)

  • Son, Won-Sik;Song, Jae-Wook;Jeon, Wan-Jae;Kim, Seung-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.175-181
    • /
    • 2019
  • In the case of a conventional single stage decompression regulator used for large depressurization in the hydrogen fuel cell system of a fuel cell electric vehicle (FCEV), problems can arise, such as pulsation, slow response, hydrogen brittleness, leakage, high weight, and high cost due to high decompression. Most of these problems can be overcome easily using two decompression mechanisms (two-stage structures). In addition, a wide outlet-pressure control range can be secured if an electronic solenoid is applied to the second decompression. Accordingly, it is necessary to improve the precision of the outlet pressure of a two-stage pressure-reducing regulator and develop techniques, such as leakage prevention, durability, light weight, and price reduction. Therefore, to improve the outlet pressure accuracy and prevent leakage, the structural part before and after decompression to improve the air tightness were divided and the analysis was carried out assuming that the valve part was closed (open ratio: 0%) after each initial internal pressure application.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Electrochemical Characteristics of Cu3Si as Negative Electrode for Lithium Secondary Batteries at Elevated Temperatures (리튬 이차전지 음극용 Cu3Si의 고온에서의 전기화학적 특성)

  • Kwon, Ji-Y.;Ryu, Ji-Heon;Kim, Jun-Ho;Chae, Oh-B.;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.116-122
    • /
    • 2010
  • A $Cu_3Si$ film electrode is obtained by Si deposition on a Cu foil using DC magnetron sputtering, which is followed by annealing at $800^{\circ}C$ for 10 h. The Si component in $Cu_3Si$ is inactive for lithiation at ambient temperature. The linear sweep thermammetry (LSTA) and galvano-static charge/discharge cycling, however, consistently illustrate that $Cu_3Si$ becomes active for the conversion-type lithiation reaction at elevated temperatures (> $85^{\circ}C$). The $Cu_3Si$ electrode that is short-circuited with Li metal for one week is converted to a mixture of $Li_{21}Si_5$ and metallic Cu, implying that the Li-Si alloy phase generated at 0.0 V (vs. Li/$Li^+$) at the quasi-equilibrium condition is the most Li-rich $Li_{21}Si_5$. However, the lithiation is not extended to this phase in the constant-current charging (transient or dynamic condition). Upon de-lithiation, the metallic Cu and Si react to be restored back to $Cu_3Si$. The $Cu_3Si$ electrode shows a better cycle performance than an amorphous Si electrode at $120^{\circ}C$, which can be ascribed to the favorable roles provided by the Cu component in $Cu_3Si$. The inactive element (Cu) plays as a buffer against the volume change of Si component, which can minimize the electrode failure by suppressing the detachment of Si from the Cu substrate.