• 제목/요약/키워드: Alloy composition

검색결과 762건 처리시간 0.029초

도재소부용 저금함유금합금에서 도재계면의 표면거동에 미치는 미량원소 In의 영향 (Effect of In on Surface Behaviors of Porcelain-Metal Boundary in Low Gold Porcelain Alloys)

  • 남상용;이기대
    • 대한치과기공학회지
    • /
    • 제21권1호
    • /
    • pp.15-26
    • /
    • 1999
  • This study was carried out by observing to composition of oxide on the surface of dental porcelain low gold alloy with various Indium additions according to the degassing and analysing the change composition of additional elements In on diffusion behaviors of Porcelain-matal surface. The specimens used were Au-Pd-Ag alloys by small indium addition. These specimens were treated for 10min at $1000^{\circ}C$ in vacuum condition. To investigate the microsturcture of oxidized alloy surface, SEM and EDAX were used, and EPMA were used to investigate the diffusion behaviors of porcelain-metal surface. X-ray diffraction were used to observe the morphological changes in the oxidation zone. The results of this study were obtained as follows ; 1) The hardness of alloy increased with increasing amount of In addition. 2) The formation of oxidation increased with increasing In content after heat treatment. 3) Diffusion of indium elements increased with increasing In content in metal-porcelain surface after firing. 4) The oxidations of alloy surface were mainly $In_2O_3$.

  • PDF

대형 고속 선박용 러더의 내침식, 부식 특성 향상을 위한 용사 코팅막 (Thermal Spray Coating Layer for Improvement of Erosion and Corrosion Resistance Applicable to Large Sized High Speed Ship's Rudder)

  • 이유송;허성현;김진홍;김여중;배일용;이명훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.196-197
    • /
    • 2011
  • Rudder, one of the most important component in the marine vessel, is now being decreased life time to serve due to cavitation erosion, vortex current, high flow speed suffer from ship speed going up dramatically. In this study, 10 kinds of thermal spray coating materials(2 of Zn alloy series, 3 of Al alloy series, 3 of Cu alloy series, 2 of STS alloy series) are chosen to apply on specimens and analyze micro structure, metallic composition, properties(porosity, oxidation) by using visual observation, XRD, EDX etc.. Additionally, to refine the characteristic of corrosion endurance for thermal spray coating layer, compared with thermal spray process and 5 kinds of heavy duty painting and AC paint (Anti-Corrosion Paint). Based on above mentioned experimental results, a priority of all coated specimens on corrosion-erosion endurances finalized and summarized there by desirable composition and process of thermal sprayed material properly.

  • PDF

비크롬계 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 산처리에 따른 화성 피막의 특성 평가 (Characteristics Evaluation of Conversion Coating of Acid Pickling AZ31 Magnesium Alloy by a Chromium-Free Phosphate-Permanganate Solution)

  • 김명환;곽삼탁;문명준
    • 한국표면공학회지
    • /
    • 제43권2호
    • /
    • pp.73-79
    • /
    • 2010
  • A chromium-free conversion coating for AZ31 magnesium alloy has been obtained by using a permanganatephosphate solution, which has been developed with acid pickling. Examination have been carried out on the conversion coatings for morphology, composition and corrosion resistance. The morphology of the conversion-coated layer was observed using optical microscope and SEM. It was shown that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to 2.7 ${\mu}m$. The chemical composition of conversion coating was mainly consisted of Mg, O, P, K, Al and Mn by EDS analysis. It was found that the corrosion resistance of the AZ31 magnesium alloy has been improved by the permanganate-phosphate conversion treatment from electrochemical polarization.

$ZrO_2$ 절연막을 이용한 Ta-Mo 합금 MOS 게이트 전극의 특성 (MOS characteristics of Ta-Mo gate electrode with $ZrO_2$)

  • 안재홍;김보라;이정민;홍신남
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.157-159
    • /
    • 2005
  • MOS capacitors were fabricated to study electrical and chemical properties of Ta-Mo metal alloy with $ZrO_2$. The work function of Ta-Mo alloy were varied from 4.1eV to 5.1eV by controlling the composition. When the atomic composition of Mo is 10%, good thermal stability up to $800^{\circ}C$ was observed and work function of MOS capacitor was 4.1eV, compatible for NMOS application. But pure Ta exhibited very poor thermal stability. After $600^{\circ}C$ annealing, equivalent oxide thickness of tantalum gate MOS capacitor was continuously decreased. Barrier heights of Ta-Mo alloy and pure metal that supported the work function values were calculated from Fowler-Nordheim analysis. As a result of these electrical?experiments, Ta-Mo metal alloy with $ZrO_2$ is excellent gate electrode for NMOS.

  • PDF

A surface chemical analysis strategy for the microstructural changes in a CuAgZrCr alloy cast under oxidation conditions

  • Ernesto G. Maffia;Mercedes Munoz;Pablo A. Fetsis;Carmen I. Cabello;Delia Gazzoli;Aldo A. Rubert
    • Advances in materials Research
    • /
    • 제13권2호
    • /
    • pp.141-151
    • /
    • 2024
  • The aim of this work was to determine the behavior of alloy elements and compounds formed during solidification in the manufacturing process of the CuAgZrCr alloy under an oxidizing environment. Bulk and surface analysis techniques, such as Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), Raman and X-ray diffraction (XRD) were used to characterize the phases obtained in the solidification process. In order to focus the analysis on the on grain boundary interface, partial removal of the matrix phase by acid attack was performed. The compositional differences obtained by SEM-EDX, Raman and XPS on post-manufacturing materials allowed us to conclude that the composition of grain boundaries of the alloy is directly influenced by the oxidizing environment of alloy manufacturing.

낮은 저항과 열안정성을 가지는 Cu/Mn 합금저항의 전기적 특성 (Electrical Properties of Cu/Mn Alloy Resistor with Low Resistance and Thermal Stability)

  • 김은민;김성철;이선우
    • 한국전기전자재료학회논문지
    • /
    • 제29권6호
    • /
    • pp.365-369
    • /
    • 2016
  • In this paper, we fabricated Cu/Mn alloy shunt resistor with low resistance and thermal stability for use of mobile electronic devices. We designed metal alloy composed of copper (Cu) and manganese (Mn) to embody in low resistance and low TCR which are conflict each other. Cu allows high electrical conductivity and Mn serves thermal stability in this Cu/Mn alloy system. We confirmed the elemental composition of the designed metal alloy system by using energy dispersive X-ray (EDX) analysis. We obtained low resistance below $10m{\Omega}$ and low temperature coefficient of resistance (TCR) below $100ppm/^{\circ}C$ from the designed Cu/Mn alloy resistor. And in order to minimize resistance change caused by alternative frequency on circuit, shape design of the metal alloy wire is performed by rolling process. Finally, we conclude that design of the metal alloy system was successfully done by alloying Cu and 3 wt% of Mn, and the Cu/Mn alloy resistor has low resistance and thermal stability.

저온 알루미늄 브레이징용 Al-Cu-Si-Sn 합금 설계 및 분말 제조 (Alloy Design and Powder Manufacturing of Al-Cu-Si alloy for Low-Temperature Aluminum Brazing)

  • 김희연;박천웅;이원희;김영도
    • 한국분말재료학회지
    • /
    • 제30권4호
    • /
    • pp.339-345
    • /
    • 2023
  • This study investigates the melting point and brazing properties of the aluminum (Al)-copper (Cu)-silicon (Si)-tin (Sn) alloy fabricated for low-temperature brazing based on the alloy design. Specifically, the Al-20Cu-10Si-Sn alloy is examined and confirmed to possess a melting point of approximately 520℃. Analysis of the melting point of the alloy based on composition reveals that the melting temperature tends to decrease with increasing Cu and Si content, along with a corresponding decrease as the Sn content rises. This study verifies that the Al-20Cu-10Si-5Sn alloy exhibits high liquidity and favorable mechanical properties for brazing through the joint gap filling test and Vickers hardness measurements. Additionally, a powder fabricated using the Al-20Cu-10Si-5Sn alloy demonstrates a melting point of around 515℃ following melting point analysis. Consequently, it is deemed highly suitable for use as a low-temperature Al brazing material.

원자력발전소 증기발생기 Alloy 690 전열관 재료의 규칙화 반응 (Ordering of Alloy 690 Steam Generator Tubings in a Nuclear Power Plant)

  • 황성식;최민재;김성우
    • Corrosion Science and Technology
    • /
    • 제22권3호
    • /
    • pp.214-219
    • /
    • 2023
  • Considering the case in the United States where most nuclear power plants with an initial design life of 40 years continue to operate until 60 or 80 years after undergoing material soundness evaluation, it is time to plan a more robust long-term operation strategy for nuclear power plants in Korea. There are some reports that SRO/LRO might be formed when Alloy 690 is heat treated for 10,000 hours to 100,000 hours at 360 to 450 ℃. The possibility of LRO formation in Alloy 690 steam generator tubings of Kori nuclear power plant unit 1 (Kori-1) was investigated using existing research papers. The mechanism in which SRO/LRO occurred was also surveyed. Alloy 690 was found to be more likely to cause ordering than Alloy 600 in terms of alloy composition. The ordering could be evaluated through changes in material properties. However, it is difficult to evaluate it from a microstructural point of view. The likelihood of LRO in Alloy 690 of the Kori-1 plant operated at 320 ℃ for 19 years seemed to be low in terms of time and exposure temperature.

Ag-Cu 합금을 이용한 매우 빠른 동작 특성의 퓨즈 엘리멘트 설계 (Design of very fast acting fuse element using the Ag-Cu alloy)

  • 김은민;이승환;조대권;김신효
    • 전기학회논문지
    • /
    • 제63권8호
    • /
    • pp.1070-1074
    • /
    • 2014
  • With the development of the electronics industry and widespread supply of many different electrical appliances, the factors of the electrical fires are also diversified. For this reason, the fuse, safety-critical component, needs accurate and stable operating characteristics for preventing various fire factor, and also needs various operating characteristics. Especially when the all electrical resistance are dropped by internal short of circuit, high current inrushes and makes the fire. In order to prevent this, very fast acting fuses should be applied. However, existing very fast acting characteristics fuse has less wire dimension of element Ag100% metal than that of fast acting fuse, and it is made of plating with low melting point metals, so it satisfy very fast acting but it can't satisfy durability and safety. For this reason, in this study, through the analyzing fusing characteristics of Ag-Cu alloy composition, the new alloy composition, which implement to very fast acting fuse without decrease of fuse elements dimension, is suggested. And this study classify the operating characteristics changes, a resistance change, and the rated current of the fuse in the overall composition change of Ag-Cu alloying. and it can be utilized for designing fuse.

전해액 중 Sodium silicate의 농도에 따라 양극 산화된 AZ31B 마그네슘 합금 양극 피막의 특성 평가 (Characteristic Evaluation of Anodic Film Depending on the Concentration of Sodium Silicate in the Electrolyte Anodized AZ31B Magnesium Alloy)

  • 이동길;김용환;박현;정우창;정원섭
    • 한국표면공학회지
    • /
    • 제42권3호
    • /
    • pp.109-115
    • /
    • 2009
  • Magnesium is one of the lightest metals, and magnesium alloys have excellent physical and mechanical properties such as high stiffness/weight ratios, good castability, good vibration and shock absorption. However their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To improve these defects, many techniques are developed. Micro arc oxidation(MAO) is a one of the surface treatments under anodic oxidation in which ceramic coating is directly formed on the surface of magnesium alloy. In this study, the characteristics of anodic film were examined after coating the AZ31B magnesium alloy through the MAO process. MAO was carried out in potassium hydroxide, potassium fluoride, and various concentration of sodium silicate in electrolyte. The morphology and chemical composition of the coating layer were characterized by SEM, XRD, EPMA and EDS. The hardness of anodic films was measured by micro-vickers hardness tester. As a result, the morphology and composition of anodic film were changed by concentration of sodium silicate. Thickness and Si composition of anodic film was increased with increasing concentration of sodium silicate in electrolyte. The hardness of anodic film was highly increased when the concentration of sodium silicate was above 40 g/l in electrolyte.