• Title/Summary/Keyword: Allowable settlement

Search Result 132, Processing Time 0.026 seconds

Performance Evaluation of Pile-Filling Material Using High Calcium Ash by Field Loading Test (고칼슘 연소재를 이용한 매입말뚝 주면고정액의 현장 재하시험을 통한 성능평가)

  • Seo, Se-Kwan;Kim, You-Seong;Lim, Yang-Hyun;Jo, Dae-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.17-24
    • /
    • 2018
  • In this study, static load test and dynamic load test were performed to evaluate pile-filling material (ZA-Soil) of soil-cement injected precast pile method which was developed by using the ash of circulating fluidized boiler as a stimulant for alkali activation reaction of blast furnace slag. As a result of the static load test, the allowable bearing capacity of pile was 1,350 kN, which was the same as the result of using ordinary portland cement. And total settlement was 6.97 mm, and net settlement was 1.48 mm. These are similar to the total settlement, 7.825 mm, and net settlement, 2.005 mm of ordinary portland cement. As a result of the dynamic load test and CAPWAP analysis, the skin friction was 375.0 kN, the end bearing capacity was 3,045.9 kN, and the allowable bearing capacity was 1,368.36 kN. These results are similar to the results of using ordinary portland cement as pile-filling material.

Probabilistic Analysis of Liquefaction Induced Settlement Considering the Spatial Variability of Soils (지반의 공간변동성을 고려한 액상화에 의한 침하량의 확률론적 해석)

  • Bong, Tae-Ho;Kim, Byoung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.5
    • /
    • pp.25-35
    • /
    • 2017
  • Liquefaction is one of the major seismic damage, and several methods have been developed to evaluate the possibility of liquefaction. Recently, a probabilistic approach has been studied to overcome the drawback of deterministic approaches, and to consider the uncertainties of soil properties. In this study, the spatial variability of cone penetration resistance was evaluated using CPT data from three locations having different variability characteristics to perform the probabilistic analysis considering the spatial variability of soil properties. Then the random fields of cone penetration resistance considering the spatial variability of each point were generated, and a probabilistic analysis of liquefaction induced settlement was carried out through CPT-based liquefaction evaluation method. As a result, the uncertainty of soil properties can be overestimated when the spatial variability is not considered, and significant probabilistic differences can occur up to about 30% depending on the allowable settlement.

A case Study on Settlement and Bearing Capacity Improvement for Soft Clay Applying the Reinforcement Method using Stabilized Soil (고화처리공법이 적용된 연약점토지반의 침하 및 지지력 개선에 관한 사례연구)

  • Ki, Wan-Seo;Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3923-3930
    • /
    • 2014
  • In this study, the physical and dynamic characteristics of soil were analyzed by selecting 3 sections as research subjects among road and structure construction sections in the construction site of the Gwangyang ${\bigcirc}{\bigcirc}$ industry area, and conducted consolidation analysis and bearing capacity assessments through Midas-GTS according to the construction conditions of the structures and section conditions of reinforcement using stabilized soil. The effects of improving the settlement and bearing capacity according to the improved effects of the stability and sections of reinforcement using stabilized soil in applying the reinforcement method using stabilized soil were analyzed as a solution for improving the settlement and bearing capacity of soft clay for constructing roads and structures. The improvement effects of the settlement and bearing capacity were outstanding when the reinforcement method using stabilized soil to the soft clay was applied. After applying the reinforcement method using stabilized soil, the holdback effect of the consolidation settlement was excellent by decreasing the volume of the consolidation settlement from a minimum of 53% to a maximum of 82%. When the width of the reinforcement using stabilized soil was twice the width of the constructed structure, it was found that the holdback effect of the consolidation settlement ranged from 1% to 7% through the width of reinforcement using stabilized soil. In addition, when applying reinforcement more than 6m in width and 1m in depth using stabilized soil, it was found that the increase in the allowable bearing capacity was 2.3 to 3.3 times more than that before applying the reinforcement, which suggests that the increase in bearing capacity by applying the reinforcement method using stabilized soil was significant.

A Study(VI) on the Development of Charts and Equations Predicting Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Axial Compressive Bearing Capacity Prediction Table Solution or Chart Solution - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(VI) - 지반의 허용압축지지력 산정용 표해 또는 도해 -)

  • Nam, Moon S.;Kwon, Oh-Kyun;Park, Mincheol;Lee, Chang Uk;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.75-95
    • /
    • 2019
  • The numerical analysis on PHC piles socketed into weathered rocks through sandy soil layers was conducted to propose the table solution or the chart solution to obtain the mobilization capacity. The mobilization capacity was determined at the settlement of 5% pile diameter and applied a safety factor of 3.0. In order to utilize the excellent compressive strength of the PHC pile effectively, it is recommended that the allowable bearing capacity of ground would be designed to be more than the long-term allowable compressive pile load. A procedure for determining an allowable pile capacity for PHC piles socketed into weathered rocks through sandy soil layers is given by the sum of the allowable skin friction of the sandy soil layer and the weathered rock layer and the allowable end bearing capacity of the weathered rock layer. The design efficiency of the PHC pile is about 85% at the reasonable design stage in the verification of the newly proposed method. Thus, long-term allowable compressive load (Pall) level of PHC piles can be utilized in the optimal design stage.

Vibration Control of Condensate Motors in Nuclear Powerplant By Bearing Redesign (베어링 재설계에 의한 원전 COP motor의 진동 제어)

  • Lim, Do-Hyeong;Kim, Won-Hyun;Lee, Jong-Moon;Lee, Soo-Mok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.264-269
    • /
    • 2008
  • This paper presents the summary of control of abnormal vibration found in the COP motors of a nuclear power plant. All six identical units of COP pump-motor assemblies showed unstable vibration pattern of which one or two showed higher vibration enough to exceed the allowable level from the installation stage. Many trials of test, measurement, overhaul and replacement had been repeated to investigate and solve the problem but only to reach unsatisfactory settlement. Recently several times of site tests are made and followed by significant diagnostic actions in which the authors group participated. It was found that the coupled shafting system of motor and pump is in close resonance with the $1^{st}$ shaft rotating speed. Redesign of topside motor bearing clearance is made to increase bearing stiffness and hence to avoid the resonance which consequently led to reduce the troubled vibration to allowable and stable status.

  • PDF

Bearing capacity of large diameter PHC pile and large diameter composite pile (대구경 PHC말뚝 및 대구경 복합말뚝($\phi$1,000mm) 지지력 산정에 관한 연구)

  • Shin, Yun-Sup;Park, Jae-Hyun;Hwang, Ui-Seong;Cho, Sung-Han;Chung, Moon-Kyung;Lee, Jin-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.351-359
    • /
    • 2010
  • Large PHC piles with a diameter of 1,000mm or larger were recently introduced for the first time in Korea. This paper presents full-scale static and dynamic pile load tests performed on two 1,000mm PHC piles and two composite piles with steel pipe piles of the same diameter in the upper portion, installed by driving and pre-boring. The objectives of the tests include evaluating pile drivability, load-settlement relation, allowable bearing capacity, and the stability of mechanical splicing element for the composite pile(a.k.a. non-welding joint). The performance of the large diameter PHC piles were thought to be satisfactory compared to that of middle sized PHC piles with a long history of successful applications in the domestic and foreign markets.

  • PDF

A Study of the Deformation Characteristics in Limestone Cavity Area by Finite Element Method (유한요소해석에 의한 석회암 공동지반의 변형특성에 관한 연구)

  • Chun, Byung-Sik;Park, Hyeong-Jun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.63-72
    • /
    • 2005
  • From the geological and engineering point of view, the limestone is so rigid that it is able to act as a bedrock but if there are some unstable elements which are solubility cavity and cracking zone in the ground, the settlement and bearing capacity of a structure will be required to long-term stability investigations and countermeasures about those problems. When comparing the allowable bearing capacity, the results of Bell's method and the Bowles' method are similar but the results of Hoek-Brown's method are very larger than the others. For weathered limestone, stability is changed by size and depth of the cavity of limestone, but soft and hard rock are stable regardless of size and depth of the cavity.

  • PDF

A Practical Approach of Stress Path Method for Rational Settlement Estimation of Saturated Clay Deposit : Part II (Settlement Estimation Procedure and Application Examples) (포화 점성토지반 침하량의 합리적 평가를 위한 실용적인 응력경로법 적용방법 : Part II (침하량 평가절차와 적용예제))

  • Kim Chang-Youb;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.99-114
    • /
    • 2005
  • In Part I of this paper, a conceptual approach of the stress path method was newly proposed for a rational estimation of settlements of saturated clay deposits. A detailed procedure for effective evaluation and use of settlement-related characteristic deformation behaviors was developed in order to provide practicality to the new approach. In this Part II, on the basis of the results of Part 1, the concept of the new approach was embodied in the form of a detailed settlement estimation procedure. The applicability and usefulness of the new procedure were strongly supported by various application examples. In addition, possible errors of other conventional settlement estimation methods were investigated by comparing with the new procedure. Because of its flexible applicability for wide range of field conditions, the new procedure will have great usefulness in the practical side. For example, a reasonable foundation design based on allowable settlement criteria can be easily performed and modification of design factors can be readily reflected even during the subsequent construction stage. Especially, the new procedure will be of great use for preliminary work in a large scale construction site where various structures are planned to be constructed on a nearly identical ground condition.

Case Study of Comparative Analysis between Static and Dynamic Loading Test of PHC Pile (굴착 후 타입된 PHC 말뚝의 재하시험 결과 비교분석 사례 연구)

  • Kim, Jaehong;Yea, Geuguwen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.13-23
    • /
    • 2013
  • In the west coastal soft ground, the static and dynamic loading tests for PHC piles which were executed using light driving without injecting cement milk were carried out and the correlation was analyzed. Initial dynamic loading test used hydraulic hammer(ram weight 70kN) and final average penetration effect presented 3.0 to 8.0mm at 0.8m drop. Then final allowable bearing capacity using CAPWAP presented 776.4 to 1,053.6kN a pile. The static loading tests which were performed at the other piles loaded 200% of the design load dividing by eight phases. As the result, total settlement was 15.97 to 16.38mm and residual settlement was 4.48 to 5.38mm, but both yielding and ultimate load can't be estimated. Therefore, allowable bearing capacity was determined larger than 1,200kN a pile regarding maximum test load as yielding load. Thus, it showed that allowable bearing capacity of the dynamic loading test was larger than static loading test in 1.54 to 1.14 times.

Failure pattern of twin strip footings on geo-reinforced sand: Experimental and numerical study

  • Mahmoud Ghazavi;Marzieh Norouzi;Pezhman Fazeli Dehkordi
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.653-671
    • /
    • 2023
  • In practice, the interference influence caused by adjacent footings of structures on geo-reinforced loose soil has a considerable impact on their behavior. Thus, the goal of this study is to evaluate the behavior of two strip footings in close proximity on both geocell and geogrid reinforced soil with different reinforcement layers. Geocell was made from geogrid material used to compare the performance of cellular and planar reinforcement on the bearing pressure of twin footings. Extensive experimental tests have been performed to attain the optimum embedment depth and vertical distance between reinforcement layers. Particle image velocimetry (PIV) analysis has been conducted to monitor the deformation, tilting and movement of soil particles beneath and between twin footings. Results of tests and PIV technique were verified using finite element modeling (FEM) and the results of both PIV and FEM were used to utilize failure mechanisms and influenced shear strain around the loading region. The results show that the performance of twin footings on geocell-reinforced sand at allowable and ultimate settlement ranges are almost 4% and 25% greater than the same twin footings on the same geogrid-reinforced sand, respectively. By increasing the distance between twin footings, soil particle displacements become smaller than the settlement of the foundations.