• Title/Summary/Keyword: Allowable load

Search Result 507, Processing Time 0.023 seconds

Investigation of the Performance Based Structural Safety Factor of Elbows in Nuclear Power Plants (원전 엘보우의 성능기반 안전여유도 분석)

  • Lee, Sung-Ho;Park, Chi-Yong;Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.826-831
    • /
    • 2009
  • The piping systems in nuclear power plant are composed of various typed pipes such as straight, elbow pipe, branch and reducer etc. The elbow is connected from straight pipe to another pipes in order to establish the complicated piping system. Elbow is one of very important components considering management of wall thinning degradation. It is however applied by various loads such as system pressure, earthquake, postulated break loading and many transient loads, which provoke simply the internal pressure, bending and torsional stress. In this study, firstly pipes in the secondary system of the nuclear power plant are classified as pipe size and type for selecting the investigating range. Next, a large number of finite element analysis considering the all typed dimensions of commercial pipe has been performed to find out the behavior of TES(twice elastic slop) plastic load of elbows, which is based on evaluation of the structural safety factor. Finally performance based structural safety factor was investigated comparing with maximum allowable load by construction code.

Evaluation of Local Allowable Wall Thickness of Thinned Pipe Subjected to Internal Pressure and Bending Moment (내압과 굽힘하중하에서 감육배관의 국부허용두께 평가)

  • Kim, Jin-Won;Park, Chi-Yong;Kim, Beom-Nyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.81-88
    • /
    • 2001
  • This study proposed an analytical method to evaluate a local allowable wall thickness (LAWT) for locally thinned pipe subjected to internal pressure and bending moment. In this method, the stresses in the thinned region were calculated by finite element analysis and plastic collapse was applied as a failure criterion of thinned pipe. Using this method, LAWT for a simplified thinned pipe was evaluated with variation in axial extent of thinned area, and it was compared with allowable wall thickness provided by previous pipe wall thickness criteria. The results showed that the LAWT was lower, about 50%, than that calculated by construction code or ASME Code N-597, and it was higher, about 2 times, than that estimated by evaluation model based on pipe experiments. In addition, LAWT was decreased with increasing axial extent of thinned area and saturated with further increase in axial extent. And, the variation in LAWT with axial extent of thinned area depended on type of load, especially a magnitude of bending moment, considering in the evaluation.

A Conversion of Load Carrying Capacity for Existing Steel Box Girder Bridge Based on Limit State Design Method (한계상태설계법에 의한 기존 강박스거더교의 내하력 환산)

  • Noh, Dong-Oh;Kyung, Kab-Soo;Park, Jin-Eun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.89-96
    • /
    • 2018
  • Bridge structures are a socially important infrastructure and safety management of bridges during the public service period is important. Steel box girder bridges, which account for a large percentage of road bridges, have been designed by allowable stress design method(ASD) and load carrying capacity have been evaluated using ASD. Although design specification has recently been changed to limit state design method(LSD), in most cases, ASD is still used for load carrying capacity evaluation. In this study, the two design methods were used to compare the results of a load rating factor evaluation on a number of bridges, and we are going to find out how to convert the existing rating factor by ASD into rating factor by LSD. The results of this study are expected to can be used as a basis for determining the need for reinforcement and evaluating load carrying capacity by LSD in bridge maintenance.

A Study(VI) on the Development of Charts and Equations Predicting Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Axial Compressive Bearing Capacity Prediction Table Solution or Chart Solution - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(VI) - 지반의 허용압축지지력 산정용 표해 또는 도해 -)

  • Nam, Moon S.;Kwon, Oh-Kyun;Park, Mincheol;Lee, Chang Uk;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.75-95
    • /
    • 2019
  • The numerical analysis on PHC piles socketed into weathered rocks through sandy soil layers was conducted to propose the table solution or the chart solution to obtain the mobilization capacity. The mobilization capacity was determined at the settlement of 5% pile diameter and applied a safety factor of 3.0. In order to utilize the excellent compressive strength of the PHC pile effectively, it is recommended that the allowable bearing capacity of ground would be designed to be more than the long-term allowable compressive pile load. A procedure for determining an allowable pile capacity for PHC piles socketed into weathered rocks through sandy soil layers is given by the sum of the allowable skin friction of the sandy soil layer and the weathered rock layer and the allowable end bearing capacity of the weathered rock layer. The design efficiency of the PHC pile is about 85% at the reasonable design stage in the verification of the newly proposed method. Thus, long-term allowable compressive load (Pall) level of PHC piles can be utilized in the optimal design stage.

Design loads for floating solar photovoltaic system: Guide to design using DNV and ASCE standards

  • Gihwan Kim;Moonsu Park
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.171-179
    • /
    • 2024
  • The market of the floating solar photovoltaic system is rapidly growing around the world with the rise of renewable energy that can replace fossil energy. While the floating solar photovoltaic system is operating and being installed in several countries, the system is exposed to the risk in terms of structural safety due to the absence of the proper design guideline. In this paper, design loads suitable for the floating solar photovoltaic system are presented. Utilizing the existing reliable design standards such as ASCE 7-16 (ASCE 7-16 2016) and DNV-RP-C205 (DNV-RP-C205 2010), the appropriate design loads for the floating solar photovoltaic system are presented. The proper load combinations are also presented by putting wave load based on DNV standards (DNV-OS-C101 2015 and DNV-OS-C201 2015) into the load combinations in ASCE standards (ASCE 7-16 2016). We present the load combinations for the allowable stress design and load and resistance factor design, respectively.

Evaluation of Yield Load in Pile Load Tests on Driven Piles (관입말뚝에 대한 연직재하시험시 항복하중의 판정법)

  • 홍원표;심기석
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 1989
  • In pile load tests on end bearing piles, generally, it is not possible to continue loading to the ultimate load. Thus, the concept of yield load has been introduced for determining design loads Iron the pile load test records. The conventional rules to determine the yield load were not available for evaluation on pile load test records obtained in 6 fields nearby westers 8r Southern Coasts in Korea. A new rule 9.as presented to determine easily the yield load, based on investigations on the pile load test records. The yield load of piles is determined at the infiection point on semi-logarithmic coordinates (P-logS), in which load is plotted in normal scale and settlement is plotted in logarithmic scale. This method may not only save much costs and times but also present safe luorking circumstances for pile load tests in field. It was found that the yield load represented the elastic limit of the pile load-settlement behalf.iota. The ultimate load, which is given at 25.4mm settlement on pile head, was 1.5 times of the yield load. The allowable long-term and short-term load capacities were, respectively, 50% and 75% of the yield load. The safety factors to get the allowable pile capacity were obtained as 2.0~4.0 for the equations to predict the static pile capacity.

  • PDF

An Experimental Study on Local Stability of Eco-block (생태축조블록의 국부적 안정성에 관한 실험적 연구)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2866-2871
    • /
    • 2011
  • In this study, computation method of tensile load which develops in tie-bar of reinforced earth, connection strength between tie-bar and eco-block and shear strength of the interface between two eco-blocks were verified by experiments. According to the test results of connection strength test, peak tensile load of D13 deformed bar were close to allowable tensile load of it for situation of infill with soil. Connection strengths of D10 and D13 deformed bars were greater than the allowable tensile load of those respectively for situation of infill with concrete. According to the test results of shear strength of the interface between two eco-blocks, shear resistance parameters, ${\alpha}_u$ and ��${\lambda}_u$ were evaluated as 1.7kN/m and 2$27.6^{\circ}$ respectively.

Investigation of the Maintenance Criteria for the Rail Surface Defects in High-Speed Railways (고속철도 레일 표면 결함 관리기준에 관한 연구)

  • Yang, Sin-Chu;Jang, Seung-Yup
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.535-544
    • /
    • 2011
  • The rail surface defects can cause the high impact load on the track and lead to the progress of the rail fatigue damage and the rail break. In case of the rail break, there is a great deal of risk for derailment, and thus the maintenance criteria for the rail surface defects are of great importance. In this study, using the dynamic train-track interaction analysis program, the impact wheel loads and rail bending stresses according to the depths of the surface defects have been calculated with the input data of the rail surface irregularities measured at 43 spots with surface defects in the ballasted track of high-speed railway. Considering the irregularity of track geometry, the allowable limits of wheel load and rail bending stress have been set, and the maintenance criteria for the rail surface defects was suggested by analyzing the relationship of the maximum values of wheel load and rail bending stress versus depth and width of rail surface defect. The analysis results suggest that the allowable depth of the surface defect is determined approximately 0.2mm from the limit of the impact wheel load.

Settlement Behavior of Strip Foundation on Geogrid Reinforced Clay under Cyclic Loading (Geogrid로 보강된 점토지반에 축조된 대상기초의 반복하중하에서의 침하거동)

  • 신은철;다스브라지앰
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.27-36
    • /
    • 1995
  • Laboratory model tests to determine the permanent settlement of a surface strip foundati on supported by geogrid -reinforced saturated clay and subjected to a low -frequency cyclic load were performed. In conducting the test, the foundation was initially subjected to an allowable static load. The cyclic load was then super -imposed over the static load. The variation of the maximum permanent settlement with the intensity of the static load and the intensity of the amplitude of the cyclic load are also presented.

  • PDF

The Maximum Installable DG Capacity According to Operation Methods of Voltage Regulator in Distribution Systems (배전계통의 전압조정기 운영방법에 따른 분산형전원 최대 도입 용량 산출)

  • Kim, Mi-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1263-1269
    • /
    • 2009
  • Stable and sustainable power supply means maintaining a certain level of power quality and service while securing energy resource and resolving environmental issues. Distributed generation (DG) has become an essential and indispensable element from environmental and energy security perspectives. It is known that voltage violation is the most important constraint for load variation and the maximum allowable DG. In distribution system, sending voltage from distribution substation is regulated by ULTC (Under Load Tap Changer) designed to maintain a predetermined voltage level. ULTC is controlled by LDC (Line Drop Compensation) method compensating line voltage drop for a varying load, and the sending voltage of ULTC calls for LDC parameters. The consequence is that the feasible LDC parameters considering variation of load and DG output are necessary. In this paper, we design each LDC parameters determining the sending voltage that can satisfy voltage level, decrease ULTC tap movement numbers, or increase DG introduction. Moreover, the maximum installable DG capacity based on each LDC parameters is estimated.