• Title/Summary/Keyword: Allowable load

Search Result 507, Processing Time 0.024 seconds

Sensitivity Analysis by Parametric Study of Load Factor for a Concrete Box Girder Railway Bridge Using Limit State Design

  • Yeo, Inho;Sim, Hyung-Bo;Kim, Daehwan;Kim, Yonghan
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.5-9
    • /
    • 2015
  • Reliability based limit state design method is replacing traditional deterministic designs such as allowable stress design and/or ultimate strength design methods in world trends. European design code(Eurocode) has adopted limit state design, and Korea road bridge design standard has also recently been transferred to limit state design method. In this trend, Korea railroad design standard is also preparing for adopting the same design concept. While safety factors are determined empirically in traditional design, load combinations as well as load factors are determined by solving limit state equations. General partial safety factors are evaluated by using AFORM(Advanced First Order Reliability Method) in the reliability based limit state design method. In this study sensitivity analysis is carried out for a dead load factor and a live load factor. Relative precisions of the dead load and the live load factors are discussed prior to the AFORM analysis. Furthermore the sectional forces of design and the material quantities required by two different design methods are compared for a PSC box girder railway bridge.

Reinforcement Effect of Marine Structure Foundation by Column Jet Method (CJM 그라우팅에 의한 호안구조물의 기초보강효과)

  • 천병식;양형칠
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.128-131
    • /
    • 2001
  • The purpose of this study is to investigate the application of Column Jet Method(CJM) as countermeasure against settlement and slope sliding of existing marine structure due to embankment load behind reclaimed revetment. CJM is to make high-strengthened body by compacting and grouting cement mortar after forming artificial space in the ground with ground relaxition machine or high pressure water jetting. Before the ground was reinforced by CJM, the result of slope stability analysis was not satisfy the allowable safe ratio, but after the ground was reinforced by CJM, the stability of slope was over the allowable safe ratio and stable, Therefor, the application of CJM to restraint settlement and sliding of marine structure was very satisfactory.

  • PDF

Harmonic Analysis of Reactor and Capacitor in Single-tuned Harmonic Filter Application

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Dong-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.239-244
    • /
    • 2011
  • Industrial power distribution system includes many kinds of non-linear loads, which produce the harmonics during energy conversion transition. The single-tuned passive filter is widely used to absorb the harmonics and attenuate its undesirable effect in the distribution system. However, the passive filter might be severely stressed, and sometimes even damaged, due to the absorption of harmonics. There is voltage rise on the capacitor when the single-turned harmonic filter is applied. When the capacitor voltage rose above the allowable limit, the expected life of the capacitor will considerably deteriorate. On the other hand, the reactor can experience the spike voltage even if the voltage and current of the capacitor are within the allowable limit, and this accumulated voltage stress of the reactor causes its premature fault. In this paper, we analyzed and compared the harmonic voltage and current of the reactor and capacitor in a single-tuned harmonic filter through the EMTP software and verified them with the experimental results.

A Study on the Dynamic Design of Structure for Sub-Vibration Control of Precision Measuring System (극 초정밀 측정시스템의 미진동제어를 위한 구조물의 동적 설계에 관한 연구)

  • 김강부;김현식;전종균;김기현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.863-868
    • /
    • 2001
  • It is necessary to design th anti-vibration system of precision machinery for a sound operation and a quality assurance. However, in general. the allowable vibration limit is not well known. In the paper, the vibration criteria for foundation of vibration sensitive machinery is proposed and anti-vibration system is designed by using vibration measurement results of foundation. Also, the F.E. analysis is performed to verify the effectiveness of a designed anti-vibration system and to determine allowable dynamic load of machinery

  • PDF

Free Spanning of Offshore Pipelines by DNV

  • CHOI HAN SUK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.47-52
    • /
    • 2005
  • This paper introduces a procedure for free span and fatigue analysis of offshore pipelines per DNV-RP-F105, 2002. The new method includes the axial force and deflection load in pipelines. The screening criteria were established to calculate the allowable span lengths in the new design codes. The screening criteria allows a certain amount of vortex-induced vibration due to wave and current loading. However, the induced pipe stresses are very small and usually below the limit stresess of typical S-N curves. In contrast, the conventional criteria did not allow any vortex-induced vibration in the free span of pipelines. Thus, the screening criteria yields reduced allowable span lengths. A simplified procedure was established to calculate the fatigue damage due to long-term current distribution. The long-term current statistics was assumed with a 3-parameter Weibull distribution. The fatigue damage was estimated for the span lengths obtained from the screening criteria for various conditions. Sample calculations show the effect of axial force for various boundary conditions. Comparisons with conventional criteria are included.

An Empirical study on the Prevention of Crash Accident in Construction Fields - Focused on G Construction Company - (건설업의 추락사고 예방 시스템 구축을 위한 실증적 연구 -G 건설사를 중심으로-)

  • Jo, Jae-Hwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2012
  • Construction companies with the highest proportion in death crash has been devoting much effort to prevent the crash accidents. In general, a crash-proof worker has been wearing a seatbelt. However, the G construction company had happened in industrial settings when workers fail to abide by the rules. The Carabiner, one of the composing of Safety Belt, must endure the Allowable Load. In this study, the Industrial accidents and cause of the crash analysis in G Construction company is performed by empirical research. And we have been studied the empirical research to setting up of the allowable limit for Carabiner.

Comparison of Design Strands for Safety Factor of Offshore Wind Turbine Foundation (해상 풍력발전기 기초의 안전율에 관한 설계기준 분석 연구)

  • Jang, Hwa Sup;Kim, Ho Sun;Lee, Kyoung Woo;Kim, Mann Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2B
    • /
    • pp.149-152
    • /
    • 2012
  • This study is carried out to analyze the design method and safety rate degree for IEC 61400-3, DNV-OS-J101, GL Wind, EUROCODE, AASHTO and domestic design standard used for offshore wind turbine foundation design. The findings will provide a design parameter for domestic offshore wind turbine foundation design. The design of the steel Support Structure of an offshore wind turbine can be based on either the Allowable Stress Design(ASD) approach or the Load and Resistance Factor Design(LRFD) approach. The design principles with the use of LRFD method are described with various limit states. A limit state is a condition beyond which a structure or part of a structure exceeds a specified design requirement. Design by the LRFD method is a design method by which the target component safety level is obtained by applying load and resistance factors to characteristic reference values of loads (load effects)and structural resistance. When the strength design of the steel Support Structure is based on the ASD approach, the design acceptance criteria are to be expressed in terms of appropriate basic allowable stresses in accordance with the requirements specified. After comparison an economics domestic offshore wind turbine foundation standard will be developed.

The Structural Reinforcing of PCC-Deck with Cantilever (캔틸레버를 갖는 PCC-Deck의 구조보강)

  • Lho, Byeong-Cheol;Kim, Chang-Kyo;Park, Jong-Hyeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.21-30
    • /
    • 2013
  • LB-Deck is one of the widely used member in interior part of girders as a permanent formwork in structures, but it is not easy to apply to the exterior part of girder due to the overturning and excessive deflection. Considering allowable deflection and safety of the exterior part, Precast Concrete Cantilever Deck (PCC-Deck) is proposed with normal LB-Deck in inner part and extended bars of LB-Deck in outer part. Both numerical analyses and experimental tests were compared to check the safety and allowable deflection for 6 types of PCC-Deck, and D-type (with 16 mm top bar, 6 mm lattice bar, 12 mm bottom bar) is suggested as an optimal structural reinforcement to the 28 kN of maximum load and 27.49 mm of final deflection. The load resisting ratio of D-type under working load of 10 kN was about 2.8 times and 77.5% of improvement was observed.

Safety Evaluation on Interaction between Track and Bridge in Continuous Welded Railway Bridge Considering Seismic Load (지진하중을 고려한 장대레일교량의 궤도-교량 상호작용에 대한 안전성 평가)

  • Shim, Yoon-Bo;Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.40-48
    • /
    • 2016
  • To observe the rail-slab interaction in continuous welded railway(CWR) bridge when earthquake occurs, additional axial rail stresses and relative longitudinal displacements between rail and bridge deck were calculated with input of various load combinations and 3 different types of seismic loads to an analytical model. As results of analysis, it can be found that standard response spectrum proposed by Korea Rail(KR) network authority for earthquake design showed less additional axial rail stresses than allowable levels, but greater relative longitudinal displacement between rail and bridge deck, which means that adjustment of relative longitudinal displacement within a standard level is much more difficult than axial train stress. Additionally, if a large-scaled earthquake as occurred at Kobe, Japan comes up, then both of additional axial rail stress and relative displacement in rail-bridge deck may exceed allowable levels, which indicates to make proper design guides against sudden earthquake occurrence.

Design comparison of Fixed Offshore Structures Designed by WSD and LRFD Methods (허용응력설계법 및 하중저항계수설계법에 의한 고정식 해양구조물 설계결과 비교 )

  • Bae-Keun Jeong;Doo-Yong Cho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.42-49
    • /
    • 2023
  • When designing fixed jacket structures, overseas design standards are applied due to the absence of domestic design methods. Although the US API standards are mainly applied, API RP 2A suggests two design methods: the allowable stress design method (WSD) and the load resistance coefficient method (LRFD), and is applied according to the designer's judgment. In this study, the stress ratio of the two design methods was reviewed and compared using SACS, an analysis program dedicated to marine structures, for fixed marine structures actually installed on the domestic coast. As a result of the review, it was found that the LRFD design method showed a greater stress ratio for extreme load analysis and transportation analysis, and the WSD design method showed a greater stress ratio for loading and lifting. Therefore, when applying the design method, it is considered appropriate to select the final design method considering safety and economic feasibility after conducting an applicability review for the two design methods.