• Title/Summary/Keyword: Allowable Safety level

Search Result 77, Processing Time 0.169 seconds

Allowable Speed of Tilting Car in the Conventional Line (기존선의 선형조건을 고려한 틸팅차량의 허용속도 평가)

  • 유영화;엄주환;엄기영
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.246-251
    • /
    • 2003
  • A quantitative analysis on the amounts of cant and lateral displacement of gravitational center due to the introduction of high-speed tilting car was carried out, based on the current alignment of the conventional line. In addition, the maximum allowable speed in curve and the level of improvement in maximum speed of tilting car were evaluated through the comparison with the maximum speed of locomotive. It was found that the tilting car produces an equivalent amount of cant, which corresponds to 47.5 % of current actual cant. This effect could be explained by the fact that 1.34 m, which is the height of gravitational center of tilting car from the rail level, is much lower than that of locomotive and thus guarantees much higher level of safety in curve. The equivalent amount of cant due to the lateral displacement of gravitational center followed by tilting in curve was 2.4 mm. It was small but not enough to be neglected and must be included in calculating the maximum speed in curve. It could be concluded that the 15 % speed-up of the conventional line is reasonable under the current condition of alignment.

A Safety Assessment of Weld Defective Steel Bridges (강교량의 용접불량에 따른 안전도 분석)

  • Park, Seung-Bum;Bang, Myeung-Sug;Kim, Do-Gyeum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.2
    • /
    • pp.107-113
    • /
    • 1997
  • Nondesructive test and structural analysis have been conducted to assess the safety of weld defective steel bridges in service. In the nondestructive test, using the radioactive ray and ultrasonic, the defective welding patterns in the steel bridges are identified. A major defective welding pattern is identified as the lack of welding area due to the insufficient welding penetration. By considering the welding defect in the above, structural analysis is conducted to evaluate the influence of welding defect on the safety of steel bridges. The results indicate that, due to the insufficient welding penetration, the stress obtained in the analysis is over the allowable fatigue stress level, and its influence on safety of the bridges is significant.

  • PDF

Performance Based Design of Passive Fire Protection Using Consequence Analysis (사고 영향 분석을 이용한 성능위주의 내화설계)

  • Han, Dong-Hoon;Lee, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.102-107
    • /
    • 2004
  • Performance based design is a recent evolutionary step in the process of designing fire protection systems. In essence, it is a logical design process resulting in a solution that achieves a specified performance. Sometimes the prescriptive solutions presented in various codes and standards are too expensive or inflexible. Often the solutions do not and enables optimization of a solution for cost and function. In this study, performance based design was carried out to determine the extent of passive fire protection for oil terminal facilities. The results of performance based design were compared with those of prescriptive code based design. Performance based design is not always more economic than prescriptive code based design but provides more reliable and effective design that is fit for the purpose.

Comparison with decompression time and modes of air decompression tables in 5 countries (5개국 공기잠수감압표의 감압시간과 감압방법 비교)

  • Kang, Joonhyuk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.4
    • /
    • pp.445-453
    • /
    • 2016
  • Objectives: The objective of this study is to assess relative safety level of the decompression tables in Ministry of Employment and Labor Public Notice No. 2014-28 in comparison with overseas decompression tables. Methods: Decompression tables in the Public Notice No. 2014-28 were compared with examples from Japan, the USA, Canada, and France in terms of ascent rate, surface intervals after exceptional exposures, oxygen decompression and allowable partial pressure, depth limits in air diving, no-decompression limits, and decompression time and methods. Results: Public Notice No. 2014-28 does not include air diving depth limits, exceptional exposure limits, mandatory surface intervals after exceptional exposures, oxygen decompression, and surface decompression schedules. Its decompression time was found to be the shortest among the five decompression tables. Conclusions: Public Notice No. 2014-28 has the lowest safety level in comparison with overseas decompression tables. Deck decompression chambers are not applicable due to no regulations on surface interval and oxygen use in the chamber for decompression.

Airspace Safety Assessment for Implementation of the Japanese Domestic Reduced Vertical Separation Minimum

  • Amai, Osamu;Nagaoka, Sakae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.435-440
    • /
    • 2006
  • The Reduced Vertical Separation Minimum (RVSM), which is the reduced minimum from 2,000 ft to 1,000 ft at flight levels (FL) between 290 and FL410 inclusive, was implemented in 30 September 2005 within the Japanese domestic airspace. Prior to the implementation, safety assessment for the airspace in assumed RVSM environments was carried out. Some model parameter values of collision risk model were estimated using flight plan (progress) data and radar data. An estimate of vertical collision risk including operational risk was calculated using these together with given parameter values. The results obtained from this analysis are as follows. (1) Contribution of the vertical collision risk for the crossing routes is about 9 percents of the total technical risk. (2) The estimate of the collision risk is $4.1{\times}10^{-9}$ [fatal accidents / flight hour] and the value is smaller than a maximum allowable level of collision risk, i.e. $5{\times}10^{-9}$ [fatal accidents / flight hour], called the Target Level of Safety.

  • PDF

Comparison of Design Strands for Safety Factor of Offshore Wind Turbine Foundation (해상 풍력발전기 기초의 안전율에 관한 설계기준 분석 연구)

  • Jang, Hwa Sup;Kim, Ho Sun;Lee, Kyoung Woo;Kim, Mann Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2B
    • /
    • pp.149-152
    • /
    • 2012
  • This study is carried out to analyze the design method and safety rate degree for IEC 61400-3, DNV-OS-J101, GL Wind, EUROCODE, AASHTO and domestic design standard used for offshore wind turbine foundation design. The findings will provide a design parameter for domestic offshore wind turbine foundation design. The design of the steel Support Structure of an offshore wind turbine can be based on either the Allowable Stress Design(ASD) approach or the Load and Resistance Factor Design(LRFD) approach. The design principles with the use of LRFD method are described with various limit states. A limit state is a condition beyond which a structure or part of a structure exceeds a specified design requirement. Design by the LRFD method is a design method by which the target component safety level is obtained by applying load and resistance factors to characteristic reference values of loads (load effects)and structural resistance. When the strength design of the steel Support Structure is based on the ASD approach, the design acceptance criteria are to be expressed in terms of appropriate basic allowable stresses in accordance with the requirements specified. After comparison an economics domestic offshore wind turbine foundation standard will be developed.

A Study on Reliability Based Design Criteria for Erection Members (가설부재의 신속성 설계기준에 관한 연구)

  • 민경주
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.3
    • /
    • pp.56-63
    • /
    • 1991
  • This study investigates reliability based design criteria for the erection members, and proposes practical algorithm which is based on Ellingwood's algorithm for the reliability analysis and the derivation of reliability based criteria. The magnitude of the uncertainties associated with load effects are chosen primarily by considering our level of practice. And thus the uncertainties so obtained are applied for the reliability analysis and the derivation of reliability based design criteria. A target reliability($\beta$$_{o}$=2.0) is selected as an appropriate value by analyzing the reliability levels of our current USD and WSD design standards. Them a set of load and resistance factors corresponding to the target reliability is proposed as a reliability based design provision, and furthermore a set of allowable stresses for steel having same level of reliability with the corresponding LRFD criteria is also prepared for the current WSD design provision. It may be concluded that the proposed LRFD reliability based design provisions and the corresponding allowable stresses give more rational design than the current code for erection membars.s.s.

  • PDF

Time Optimal Control of Nuclear Reactor with Constraint on Power Overshoot (Overshoot에 구속조건을 갖는 원자여의 시간최적제어)

  • 곽은호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.12 no.4
    • /
    • pp.15-20
    • /
    • 1975
  • The power overshoot is rises in the output during the transient period when the output of nuclear reactor is increased from the initial state to the desired target state and certain amount of constraint on power level is of primary importance for safety control of nuclear reactor. Therefore, the maximum principle is applied to this process control in transfering its power from the initial state(no, co) to the final target state(2no, 2co or 1.5no, 1.5co), adjusting the reactivity so that its overshoot is limited within the allowable constraint required. In this case, the switching points, switching times, optimal lima and optimal control reactivity are calculated.

  • PDF

Study(III) on the Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - The Proper Use of Long-term Allowable Compressive Load of PHC Piles by Analyzing Quality Test and Product Specifications Data - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(III) - 품질 성능 검사 자료 및 성능 제원 표 분석을 통한 PHC말뚝의 장기허용압축하중 성능의 올바른 활용 -)

  • Kim, Chae Min;Yun, Dae Hee;Lee, Chang Uk;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.15-28
    • /
    • 2019
  • Long-term allowable compressive Loads of PHC piles were analyzed based on qualification tests results by 17 small and medium PHC pile producing companies and product specifications by 6 major and 17 small and medium PHC pile producing companies. At the present stage, an average long-term allowable compressive load of PHC pile was designed at 70% level from current design data, and safety factor of 4.0 was applied to long-term allowable compressive loads of PHC pile despite of its excellent quality. Most quality standards of PHC pile are specified at KS F 4306. But compressive strength test method of spun concrete is specified at KS F 2454. As a result of analyzing quality test data supplied by each manufacturer, all quality test results showed higher performances than standard values. Therefore, it was considered that the capacity of PHC pile can be used up to the maximum allowable compressive load of PHC pile when PHC pile is designed.

A Study of Sound Insulation and Structure Safety of the Shelter from the Firing of the Large Caliber Gun (포 발사에 따른 쉘터 구조물의 차음 및 구조안전성 연구)

  • Lee, HaeSuk;Heo, DongEun;Park, NoSeok;Na, TaeHeum;Jang, YoHan;Hong, JunHee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.639-646
    • /
    • 2017
  • This paper describes the sound insulation and structural safety of the shelter which may be used for shooters. The noise level of the shelter should be less than 100 dB on the basis of the Industrial Safety and Act, the World Health Organization and the MIL-STD. The sound insulation design was designed for the shelter structure. The designed shelter performance was verified by the real measurement after completing the construction of the shelter. The system was also designed using the finite element method with data of sound pressure measured in the test. Its response was obtained numerically. It is proved that the shelter structure is sufficiently safe considering the calculated maximum stress level with the allowable stress of structural property.