Time Optimal Control of Nuclear Reactor with Constraint on Power Overshoot

Overshoot에 구속조건을 갖는 원자여의 시간최적제어

  • Published : 1975.08.01

Abstract

The power overshoot is rises in the output during the transient period when the output of nuclear reactor is increased from the initial state to the desired target state and certain amount of constraint on power level is of primary importance for safety control of nuclear reactor. Therefore, the maximum principle is applied to this process control in transfering its power from the initial state(no, co) to the final target state(2no, 2co or 1.5no, 1.5co), adjusting the reactivity so that its overshoot is limited within the allowable constraint required. In this case, the switching points, switching times, optimal lima and optimal control reactivity are calculated.

원자로의 출력을 초기상태에서 요구표적 상태로 증가시켜 주는 과도기간중 출력의 Overshoot가 생기는데 이 Overshoot에 구속조건을 두는 것은 원자로를 제각함에 있어 안전사 매우 중요하다. 따라서 출력이 요구 최대허용 구동영역을 넘지 않도록 반응도를 조절하면서 초기값(no, co)에서 최종같인 요구값(2no,2co) 또는 (1. 5no,1.5co)로 출력을 증가시키는데 최대원리(Maximum principle)를 적용하였다. 그리고 이때의 스위청점, 스위청시간 및 최적제각 반응도를 구하였다. The power overshoot is rises in the output during the transient period when the output of nuclear reactor is increased from the initial state to the desired target state and certain amount of constraint on power level is of primary importance for safety control of nuclear reactor. Therefore, the maximum principle is applied to this process control in transfering its power from the initial state(no, co) to the final target state(2no, 2co or 1.5no, 1.5co), adjusting the reactivity so that its overshoot is limited within the allowable constraint required. In this case, the switching points, switching times, optimal lima and optimal control reactivity are calculated.

Keywords