• Title/Summary/Keyword: Allowable Limit

Search Result 325, Processing Time 0.024 seconds

Seismic Qualification of the Air Cleaning Units for Nuclear Power Plant Ulchin 5&6 (울진 원자력발전소 5,6호기용 공기정화기에 대한 내진검증)

  • Lee, Joon-Keun;Kim, Jin-Young;Chung, Phil-Joong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.404-409
    • /
    • 2001
  • Seismic qualification of the Air Cleaning Units for nuclear power plant Ulchin 5&6 has been performed with the guideline of ASME Section III and IEEE 344 code. By using the structural and geometrical similarity analysis, the three models to be analyzed is condensed into a single model and, at the same time, the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz, which is the upper frequency limit of the seismic load, response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and electric stability of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As the all combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, the authors confirm the safety of the nuclear equipments Air Cleaning Units studied in this paper.

  • PDF

Design analysis of the optimum configuration of self-anchored cable-stayed suspension bridges

  • Lonetti, Paolo;Pascuzzo, Arturo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.847-866
    • /
    • 2014
  • This paper describes a formulation to predict optimum post-tensioning forces and cable dimensioning for self-anchored cable-stayed suspension bridges. The analysis is developed with respect to both dead and live load configurations, taking into account design constrains concerning serviceability and ultimate limit states. In particular, under dead loads, the analysis is developed with the purpose to calculate the post-tensioning cable forces to achieve minimum deflections for both girder and pylons. Moreover, under live loads, for each cable elements, the lowest required cross-section area is determined, which verifies prescriptions, under ultimate or serviceability limit states, on maximum allowable stresses and bridge deflections. The final configuration is obtained by means of an iterative procedure, which leads to a progressive definition of the stay, hanger and main cable characteristics, concerning both post-tensioning cable stresses and cross-sections. The design procedure is developed in the framework of a FE modeling, by using a refined formulation of the bridge components, taking into account of geometric nonlinearities involved in the bridge components. The results demonstrate that the proposed method can be easily utilized to predict the cable dimensioning also in the framework of long span bridge structures, in which typically more complexities are expected in view of the large number of variables involved in the design analysis.

Seismic Qualification of the Main Control Board for Nuclear Power Plant (원자력발전소용 주 제어반의 내진 검증)

  • 변훈석;이준근
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.856-863
    • /
    • 2002
  • Seismic qualification of the main control board(MCB) for the nuclear power plant Ulchin 5 and 6 has been performed with the guideline of ASME Section III and IEEE 344 code. As the size and weight of the MCB are too large and heavy to excite using the excitation table, finite element analysis is used in order to investigate the dynamic behaviors and structural integrity of the MCB. As the fundamental frequencies of the equipment are found to be less than 33 Hz, which is the upper frequency limit for the dynamic analysis, response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the electrical stability of the major components of the MCB. modal analysis theory has been adopted to derive the required response spectra at the component locations. As the all combined stresses obtained from the above procedures are less than the allowable stresses and no mechanical or electrical failures are found from the seismic testing, the authors can confirm the safety of the nuclear equipment MCB under the given seismic loading conditions.

Determination of minimum depth of prestressed concrete I-Girder bridge for different design truck

  • Atmaca, Barbaros
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • The depth of superstructure is the summation of the height of girders and the thickness of the deck floor. In this study, it is aim to determine the maximum span length of girders and minimum depth of the superstructure of prestressed concrete I-girder bridge. For this purpose the superstructure of the bridge with the width of 10m and the thickness of the deck floor of 0.175m, which the girders length was changed by two meter increments between 15m and 35m, was taken into account. Twelve different girders with heights of 60, 75, 90, 100, 110, 120, 130, 140, 150, 160, 170 and 180 cm, which are frequently used in Turkey, were chosen as girder type. The analyses of the superstructure of prestressed concrete I girder bridge was conducted with I-CAD software. In the analyses AASHTO LRFD (2012) conditions were taken into account a great extent. The dead loads of the structural and non-structural elements forming the bridge superstructure, prestressing force, standard truck load, equivalent lane load and pedestrian load were taken into consideration. HL93, design truck of AASHTO and also H30S24 design truck of Turkish Code were selected as vehicular live load. The allowable concrete stress limit, the number of prestressed strands, the number of debonded strands and the deflection parameters obtained from analyses were compared with the limit values found in AASHTO LRFD (2012) to determine the suitability of the girders. At the end of the study maximum span length of girders and equation using for calculation for minimum depth of the superstructure of prestressed concrete I-girder bridge were proposed.

Reliability assessment of RC shear wall-frame buildings subjected to seismic loading

  • Tuken, Ahmet;Dahesh, Mohamed A.;Siddiqui, Nadeem A.
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.719-729
    • /
    • 2017
  • A considerable research is available on the seismic response of Reinforced Concrete (RC) shear wall-frame buildings, but the studies on the reliability of such buildings, with the consideration of human error, are limited. In the present study, a detailed procedure for reliability assessment of RC shear wall-frame building subjected to earthquake loading against serviceability limit state is presented. Monte Carlo simulation was used for the reliability assessment. The procedure was implemented on a 10-story RC building to demonstrate that the shear walls improve the reliability substantially. The annual and life-time failure probabilities of the studied building were estimated by employing the information of the annual probability of earthquake occurrence and the design life of the building. A simple risk-based cost assessment procedure that relates both the structural life-time failure probability and the target reliability with the total cost of the building was then presented. The structural failure probability (i.e., the probability of exceeding the allowable drift) considering human errors was also studied. It was observed that human error in the estimation of total load and/or concrete strength changes the reliability sharply.

Determination of L-Carnitine in Infant Powdered Milk Samples after Derivatization

  • Park, Jung Min;Koh, Jong Ho;Kim, Jin Man
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.731-738
    • /
    • 2021
  • Herein, a novel analytical method using a high-performance liquid chromatography-fluorescence detector (HPLC/FLD) is developed for rapidly measuring an L-carnitine ester derivative in infant powdered milk. In this study, solid-phase extraction cartridges filled with derivatized methanol and distilled water were used to effectively separate L-carnitine. Protein precipitation pretreatment was carried out to remove the protein and recover the analyte extract with a high recovery (97.16%-106.56%), following which carnitine in the formula was derivatized to its ester form. Precolumn derivation with 1-aminoanthracene (1AA) was carried out in a phosphate buffer using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) as the catalyst. Method validation was performed following the AOAC guidelines. The calibration curves were linear in the L-carnitine concentration range of 0.1-2.5 mg/L. The lower limit of quantitation and limit of detection of L-carnitine were 0.076 and 0.024 mg/L, respectively. The intra- and interday precision and recovery results were within the allowable limits. The results showed that our method helped reduce the sample preparation time. It also afforded higher resolution and better reproducibility than those obtained by traditional methods. Our method is suitable for detecting the quantity of L-carnitine in infant powdered milk containing a large amount of protein or starch.

Ultimate Limit State Risk Assessment of Penta Pod Suction Bucket Support Structures for Offshore Wind Turbine due to Scour (세굴에 기인한 해상풍력터빈 펜타팟 석션버켓 지지구조물의 극한한계상태 위험도 평가)

  • Kim, Young Jin;Vu, Ngo Duc;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.374-382
    • /
    • 2021
  • The scour risk assessment was conducted for ultimate limit state of newly developed penta pod suction bucket support structures for a 5.5 MW offshore wind turbine. The hazard was found by using an empirical formula for scour depth suitable for considering marine environmental conditions such as significant wave height, significant wave period, and current velocity. The scour fragility curve was calculated by using allowable bearing capacity criteria of suction foundation. The scour risk was assessed by combining the scour hazard and the scour fragility.

Characteristic Evaluation of Bending Strength Distributions on Revised Korean Visual Grading Rule (개정된 육안등급 구분에 따른 휨강도 특성 평가)

  • Pang, Sung-Jun;Oh, Jung-Kwon;Park, Chun-Young;Park, Joo-Saeng;Park, Mun-Jae;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Recently, the visual grading rule of Korea Forest Research Institute (KFRI) was revised and it is necessary to investigate the distribution characteristics of visual graded lumber in accordance with the revised rule. Therefore, in this study, the distribution characteristics of bending strength was investigated with revised visual grading rule and changed prior rule, respectively. The size of specimens was $38{\times}140{\times}3,000$ (mm) and the species were $Larix$ $kaempferi$ and $Pinus$ $koraiensis$. The moisture content was under 18% and the specimens were tested in accordance with ASTM D-198. The number of No. 1 and 2 grades, suitable for structural lumber, was increased when the revised visual grading rule was applied. Moreover, the revised rule was more effective to distinguish sharply between No. 1 and 2 grades and below No. 3 grade. Meanwhile, the lower 5% exclusion limit and allowable stresses were generally decreased when revised visual grading rule had been applied. However, the announcement of Korea Forest Service, tested with small clear specimen, was much lower than the allowable stresses of this test, tested with structural lumber. Therefore, the revision of allowable design values should be considered for more exact use and effective structural design.

Optimal Design of Breakwater Caisson Considering Expected Total Construction Cost and Allowable Sliding Distance (기대 총 건설비 및 허용 활동량을 고려한 방파제 케이슨의 최적설계)

  • Kim Kyung-Suk;Suh Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.4
    • /
    • pp.280-293
    • /
    • 2005
  • In this study, a model to calculate the expected total construction cost has been developed by combining a model to calculate the sliding distance of a caisson of a vertical breakwater and a model to calculate the rehabilitation cost of a caisson. The optimal cross-section of a caisson of a vertical breakwater is defined as the cross-section that requires a minimum expected total construction cost within the allowable limit of caisson sliding. Two allowable limits are considered: 0.1 m of the expected sliding distance during the lifetime of the breakwater and 0.1 of the probability that the cumulative sliding distance during the lifetime of the breakwater is greater than 0.3 m. A discount rate has also been introduced to convert the future rehabilitation cost to the present value. The introduction of the discount rate reduces the expected total construction cost for the caissons designed for shorter return periods due to frequent rehabilitations. The present design method requires a smaller cross-section than the conventional deterministic method in shallow water depths, enabling us to design a caisson more economically. On the other hand, the above-mentioned allowable limits of caisson sliding show similar results for smaller water depths, while, for larger depths, the former requires a larger cross-section than the latter.

A Study on Under Keel Clearance of Gadeok Channel for the Safety Passage of Mega Container Ship (초대형 컨테이너선의 가덕수로 안전운항을 위한 선저여유수심 연구)

  • Ryu, Won;Kong, Suk-Young;Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.789-797
    • /
    • 2021
  • The worldwide sizes of container ships are rapidly increasing. The container ship size in 2005, which was about 9,200 TEU has increased to 24,000 TEU in recent times. In addition to the increase in the sizes of the container ships, the arrivals/departures of large container vessels to/from Korea have also increased. Hence, the necessity for reviewing safe passage of such vessels is emphasized. In the present study, a 24,000 TEU container vessel was used as a model ship to calculate the under-keel clearance (UKC) at Gadeok Channel through which vessels must pass to arrive at Busan New Port, in accordance with the Korean Port and Fishing Port Design Standards and Commentary. In addition, the maximum allowable speed that meets UKC standards was calculated using various squat formulas, whose results were then compared with the current speed limit standards. The analysis results show that Busan New Port requires 10% marginal water depth, and the squat that meets this requirement is 0.95 m. Gadeok Channel requires 15% marginal water depth, and the squat that meets this requirement is 1.78 m; in this case, the maximum allowable speed is calculated as 15 kts. Busan New Port has set the speed limit as 12 kts, which is higher than the calculated 11 kts. Thus, speed limit reconsideration is required in terms of safety. However, the set speed limit for Gadeok Channel is 12 kts, which is lower than the calculated 15 kts. Thus, additional considerations may be provided to increase the speed limits for smooth navigational passage of vessels. The present study, however, is constrained by the fact that it reflects only a limited number of elements in the UKC and allowable speed calculations; therefore, more accurate UKC and safe speed values can be suggested based on extended studies to this research.