The business of Internet of Vehicles (IoV) is growing rapidly, and the large amount of data exchange has caused problems of large mobile network communication delay and large energy loss. A strategy for resource allocation of IoV communication based on mobile edge computing (MEC) is thus proposed. First, a model of the cloud-side collaborative cache and resource allocation system for the IoV is designed. Vehicles can offload tasks to MEC servers or neighboring vehicles for communication. Then, the communication model and the calculation model of IoV system are comprehensively analyzed. The optimization objective of minimizing delay and energy consumption is constructed. Finally, the on-board computing task is coded, and the optimization problem is transformed into a knapsack problem. The optimal resource allocation strategy is obtained through genetic algorithm. The simulation results based on the MATLAB platform show that: The proposed strategy offloads tasks to the MEC server or neighboring vehicles, making full use of system resources. In different situations, the energy consumption does not exceed 300 J and 180 J, with an average delay of 210 ms, effectively reducing system overhead and improving response speed.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권6호
/
pp.1638-1658
/
2024
As a crucial development direction for the sixth generation of mobile communication networks (6G), Low Earth Orbit (LEO) satellite networks exhibit characteristics such as low latency, seamless coverage, and high bandwidth. However, the frequent changes in the topology of LEO satellite networks complicate communication between satellites, and satellite power resources are limited. To fully utilize resources on satellites, it is essential to determine the association between satellites before power allocation. To effectively address the satellite association problem in LEO satellite networks, this paper proposes a satellite association-based resource allocation algorithm. The algorithm comprehensively considers the throughput of the satellite network and the fairness associated with satellite correlation. It formulates an objective function with logarithmic utility by taking the logarithm and summing the satellite channel capacities. This aims to maximize the sum of logarithmic utility while promoting the selection of fewer associated satellites for forwarding satellites, thereby enhancing the fairness of satellite association. The problems of satellite association and power allocation are solved under constraints on resources and transmission rates, maximizing the logarithmic utility function. The paper employs an improved Kuhn-Munkres (KM) algorithm to solve the satellite association problem and determine the correlation between satellites. Based on the satellite association results, the paper uses the Lagrangian dual method to solve the power allocation problem. Simulation results demonstrate that the proposed algorithm enhances the fairness of satellite association, optimizes resource utilization, and effectively improves the throughput of LEO satellite networks.
For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권1호
/
pp.211-232
/
2024
In this paper, we consider the resource allocation and offloading decisions of device-to-device (D2D) cooperative UAV-assisted mobile edge computing (MEC) system, where the device with task request is served by unmanned aerial vehicle (UAV) equipped with MEC server and D2D device with idle resources. On the one hand, to ensure the fairness of time-delay sensitive devices, when UAV computing resources are relatively sufficient, an optimization model is established to minimize the maximum delay of device computing tasks. The original non-convex objective problem is decomposed into two subproblems, and the suboptimal solution of the optimization problem is obtained by alternate iteration of two subproblems. On the other hand, when the device only needs to complete the task within a tolerable delay, we consider the offloading priorities of task to minimize UAV computing resources. Then we build the model of joint offloading decision and power allocation optimization. Through theoretical analysis based on KKT conditions, we elicit the relationship between the amount of computing task data and the optimal resource allocation. The simulation results show that the D2D cooperation scheme proposed in this paper is effective in reducing the completion delay of computing tasks and saving UAV computing resources.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권9호
/
pp.4197-4219
/
2017
Cloud computing is a new service to provide dynamic, scalable virtual resource services via the Internet. Cloud market is available to multiple cloud computing resource providers and users communicate with each other and participate in market transactions. However, since cloud computing is facing with more and more security issues, how to complete the allocation process effectively and securely become a problem urgently to be solved. In this paper, we firstly analyze the cloud resource allocation problem and propose a mathematic model based on combinatorial double auction. Secondly, we introduce a trust evaluation mechanism into our model and combine genetic algorithm with simulated annealing algorithm to increase the efficiency and security of cloud service. Finally, by doing the overall simulation, we prove that our model is highly effective in the allocation of cloud resources.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권1호
/
pp.91-107
/
2014
Device-to-device (D2D) communication is an excellent technology to improve the system capacity by sharing the spectrum resources of cellular networks. Multicast service is considered as an effective transmission mode for the future mobile social contact services. Therefore, multicast based on D2D technology can exactly improve the spectrum resource efficiency. How to apply D2D technology to support multicast service is a new issue. In this paper, a resource allocation scheme based on cognitive radio (CR) for D2D underlay multicast communication (CR-DUM) is proposed to improve system performance. In the cognitive cellular system, the D2D users as secondary users employing multicast service form a group and reuse the cellular resources to accomplish a multicast transmission. The proposed scheme includes two steps. First, a channel allocation rule aiming to reduce the interference from cellular networks to receivers in D2D multicast group is proposed. Next, to maximize the total system throughput under the condition of interference and noise impairment, we formulate an optimal transmission power allocation jointly for the cellular and D2D multicast communications. Based on the channel allocation, optimal power solution is in a closed form and achieved by searching from a finite set and the interference between cellular and D2D multicast communication is coordinated. The simulation results show that the proposed method can not only ensure the quality of services (QoS), but also improve the system throughput.
In this paper, we address a task allocation problem for a robot team that performs a search and attack mission. The robots are limited in sensing and communication capabilities, and carry different types of resources that are used to attack a target. The environment is uncertain and dynamic where no prior information about targets is given and dynamic events unpredictably happen. The goal of robot team is to collect total utilities as much as possible by destroying targets in a mission horizon. To solve the problem, we propose a distributed task allocation framework incorporated with effective resource management based on resource welfare. The framework we propose enables the robot team to retain more robots available by balancing resources among robots, and respond smoothly to dynamic events, which results in system performance improvement.
IEIE Transactions on Smart Processing and Computing
/
제3권5호
/
pp.285-297
/
2014
This paper presents the results of an investigation into bi-directional communication in spectrum sharing-based cognitive radio (Bi-CR) systems. A Bi-CR system can increase the spectral efficiency significantly by sharing the spectrum and through the bi-directional use of spatial resources for two-way communication. On the other hand, the primary user experiences more interference from the secondary users in a Bi-CR system. Satisfying the interference constraint by simply reducing the transmission power results in performance degradation for secondary users. In addition, secondary users also experience self-interference from echo channels due to full duplexing. These imperfections may weaken the potential benefits of the Bi-CR system. Therefore, a new way to overcome these defects in the Bi-CR system is needed. To address this need, this paper proposes some novel power allocation schemes for the Bi-CR system. This contribution is based on two major analytic environments, i.e., noise-limited and interference-limited environments, for providing useful analysis. This paper first proposes an optimal power allocation (OPA) scheme in a noise-limited environment and then analyzes the achievable sum rates. This OPA scheme has an effect in the noise-limited environment. In addition, a power allocation scheme for the Bi-CR system in an interference-limited environment was also investigated. The numerical results showed that the proposed schemes can achieve the full duplexing gain available from the bi-directional use of spatial resources.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권7호
/
pp.3134-3155
/
2020
In this paper, we study the joint radio and computational resource allocation in the ultra-dense mobile-edge computing networks. In which, the scenario which including both computation offloading and communication service is discussed. That is, some mobile users ask for computation offloading, while the others ask for communication with the minimum communication rate requirements. We formulate the problem as a joint channel assignment, power control and computational resource allocation to minimize the offloading cost of computing offloading, with the precondition that the transmission rate of communication nodes are satisfied. Since the formulated problem is a mixed-integer nonlinear programming (MINLP), which is NP-hard. By leveraging the particular mathematical structure of the problem, i.e., the computational resource allocation variable is independent with other variables in the objective function and constraints, and then the original problem is decomposed into a computational resource allocation subproblem and a joint channel assignment and power allocation subproblem. Since the former is a convex programming, the KKT (Karush-Kuhn-Tucker) conditions can be used to find the closed optimal solution. For the latter, which is still NP-hard, is further decomposed into two subproblems, i.e., the power allocation and the channel assignment, to optimize alternatively. Finally, two heuristic algorithms are proposed, i.e., the Co-channel Equal Power allocation algorithm (CEP) and the Enhanced CEP (ECEP) algorithm to obtain the suboptimal solutions. Numerical results are presented at last to verify the performance of the proposed algorithms.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권10호
/
pp.3256-3274
/
2022
With the rapid development of information and communications technology, the construction of efficient, reliable, and safe Internet of Things (IoT) is an inevitable trend in order to meet high-quality demands for the forthcoming 6G communications. In this paper, we study a secure intelligent reflecting surface (IRS)-assisted IoT system where malicious eavesdropper trying to sniff out the desired information from the transmission links between the IRS and legitimate IoT devices. We discuss the system overall performance and propose a hybrid resource allocation scheme for maximizing the secrecy capacity and secrecy energy efficiency. In order to achieve the trade-off between transmission reliability, communication security, and energy efficiency, we develop a quantum-inspired marine predator algorithm (QMPA) for realizing rational configuration of system resources and prevent from eavesdropping. Simulation results demonstrate the superiority of the QMPA over other strategies. It is also indicated that proper IRS deployment and power allocation are beneficial for the enhancement of system overall capacity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.