• Title/Summary/Keyword: Allocation methods

Search Result 703, Processing Time 0.027 seconds

Cost Allocation among Local Governments for Environmental Infrastructure: A Case Study of Sewage Treatment Plant (환경기초시설의 지자체간의 협력적 운영을 위한 합리적 비용배분: 하수처리장사례를 중심으로)

  • Kim, Chong Won;Han, Dong Geun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.7
    • /
    • pp.629-641
    • /
    • 2014
  • This study explores methods of allocating costs incurring from construction of environmental infrastructure among local governments involved in the project. Principles for equitable cost-allocation are reviewed, and pros/cons associated with different methods are examined. Proportional Allocation method, Shapley Value method, SCRB (Separable Cost-Remaining Benefits) method are applied to a case of swage treatment plant in Gyeongnam province region, Korea. It is found that the SCRB method produces the most equitable result, followed by Shapley method. The Proportional Allocation method, although easy to understand and simple to calculate, is found to be skewed in favor of small town.

Population Allocation at the Building level for Micro-level Urban Simulation: A Case of Jeonju, Korea

  • Kim, Dohyung;Cho, Dongin
    • Asian Journal of Innovation and Policy
    • /
    • v.9 no.2
    • /
    • pp.223-239
    • /
    • 2020
  • It is important for urban planners and policy makers to understand complex, diverse urban demands and social structure, but this is not easy due to lack of data that represents the dynamics of residents at micro-geographical level. This paper explores how to create population data at at a micro-level by allocating population data to building. It attempted to allocate population data stored in a grid layer (100 meters by 100 meters) into a building footprint layer that represents the appearance of physical buildings. For the allocation, this paper describes a systemic approach that classifies grid cells into five prototypical patterns based on the composition of residential building types in a grid cell. This approach enhances allocation accuracy by accommodating heterogeneity of urban space rather than relying on the assumption of uniform spatial homogeneity of populations within an aerial unit. Unlike the methods that disaggregate population data to the parcel, this approach is more applicable to Asian cities where large multifamily residential parcels are common. However, it should be noted that this paper does not demonstrate the validity of the allocated population since there is a lack of the actual data available to be compared with the current estimated population. In the case of water and electricity, the data is already attached to an individual address, and hence, it can be considered to the purpose of the validation for the allocation. By doing so, it will be possible to identify innovative methods that create a population distribution dataset representing the comprehensive and dynamic nature of the population at the micro geographical level.

Performance Evaluation by Frame Discard Methods in Adaptive Bandwidth Allocation Technique for Transmission Plan of Game Moving Picture (게임 동영상 전송을 위한 적응형 대역폭 방법에서 프레임 폐기 방법에 의한 성능 평가)

  • Lee, Myoun-Jae;Kim, Tae-Eun
    • Journal of Digital Contents Society
    • /
    • v.9 no.3
    • /
    • pp.433-439
    • /
    • 2008
  • A moving picture in online game is one of major ways to advertise online games, which gives a lot of help in playing game. In this case, a moving picture is compressed to variable bit rate for efficient storage use and network resource efficiency. Adaptable bandwidth allocation technique builds a transmission plan of a game moving picture. And, then some frames are discarded when transmission rate by the transmission plan is larger than available transmission rate, until transmission rate satisfies available transmission rate. Thus, performance evaluation factors in adaptable bandwidth allocation technique may be dependent on discarding order of a frame which transmission rate is much influenced. In this paper, in order to show the performance, a CBA algorithm, an MCBA algorithm, an MVBA algorithm, [6] and [7] algorithm were applied to a transmission plan in the adaptable band width allocation technique using various frame discard methods and performance evaluation factors were compared in among smoothing algorithms.

  • PDF

A Method of Profit Allocation for Sharing Economy among Companies Considering the Transaction Costs (거래비용을 고려한 기업 간 공유경제에서의 이익 배분 방안)

  • Kim, Doo Hwan;Lee, Kangbae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.4
    • /
    • pp.111-126
    • /
    • 2015
  • Currently, many enterprises are trying to allocate the investment costs and risks through collaboration, and strengthen their competitiveness by sharing their resources and gains. Intercorporate sharing economy, a type of intercorporate collaboration, refers to the economic activity to share the idle resources of enterprises and enhance their efficiency. For a successful intercorporate economy with the participation of various stakeholders, there is a need to establish the clear allocation method of gains. Accordingly, this study suggested three methods-the MST method that can apply transaction cost incurred when forming a coalition for sharing economy; the average of transaction cost incurred by each participant, and the Shapley Value application method for the transaction cost incurred between the participants. In addition, this study also suggested gain allocation methods such as the "Equal distribution of gain" method, a gain allocation method based on the Cooperative Game Theory, the the "Proportional distribution of gain" method, and the Shapley Value method that takes in consideration the transaction costs.

A hybrid tabu search algorithm for Task Allocation in Mobile Crowd-sensing

  • Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.102-108
    • /
    • 2020
  • One of the key features of a mobile crowd-sensing (MCS) system is task allocation, which aims to recruit workers efficiently to carry out the tasks. Due to various constraints of the tasks (such as specific sensor requirement and a probabilistic guarantee of task completion) and workers heterogeneity, the task allocation become challenging. This assignment problem becomes more intractable because of the deadline of the tasks and a lot of possible task completion order or moving path of workers since a worker may perform multiple tasks and need to physically visit the tasks venues to complete the tasks. Therefore, in this paper, a hybrid search algorithm for task allocation called HST is proposed to address the problem, which employ a traveling salesman problem heuristic to find the task completion order. HST is developed based on the tabu search algorithm and exploits the premature convergence avoiding concepts from the genetic algorithm and simulated annealing. The experimental results verify that our proposed scheme outperforms the existing methods while satisfying given constraints.

Assessment of Air Quality Impact Associated with Improving Atmospheric Emission Inventories of Mobile and Biogenic Sources

  • Shin, Tae-joo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.11-23
    • /
    • 2000
  • Photochemical air quality models are essential tools in predicting future air quality and assessing air pollution control strategies. To evaluate air quality using a photochemical air quality model, emission inventories are important inputs to these models. Since most emission inventories are provided at a county-level, these emission inventories need to be geographically allocated to the computational grid cells of the model prior to running the model. The conventional method for the spatial allocation of these emissions uses "spatial surrogate indicators", such as population for mobile source emissions and county area for biogenic source emissions. In order to examine the applicability of such approximations, more detailed spatial surrogate indicators were developed using Geographic Information System(GIS) tools to improve the spatial allocation of mobile and boigenic source emissions, The proposed spatial surrogate indicators appear to be more appropriate than conventional spatial surrogate indicators in allocating mobile and biogenic source emissions. However, they did not provide a substantial improvement in predicting ground-level ozone(O3) concentrations. As for the carbon monoxide(CO) concentration predictions, certain differences between the conventional and new spatial allocation methods were found, yet a detailed model performance evaluation was prevented due to a lack of sufficient observed data. The use of the developed spatial surrogate indicators led to higher O3 and CO concentration estimates in the biogenic source emission allocation than in the mobile source emission allocation.llocation.

  • PDF

Channel Allocation Using Mobile Station Network in Reproduction Stage (이동통신망에서 재생산 단계를 적용한 채널할당)

  • Heo, Seo-Jung;Son, Dong-Cheol;Kim, Chang-Suk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.577-582
    • /
    • 2012
  • If the mobile station requests the channel allocation in mobile networks, switching center is assigned a channel to mobile station that belong to each base station. Channel allocation schemes is a fixed channel allocation, dynamic channel allocation and a hybrid approach that combines the two forms. To assign a frequency well to use resources efficiently to provide quality service to our customers. In this paper, we proposed method to assign frequencies to minimize interference between channels and to minimizes the number of searching time. The proposed method by the genetic algorithm to improve accuracy and efficiency of the verification steps and reproduction stages were used. In addition, the proposed method by comparing with other methods showed that proposed method is better through the simulations.

Optimization Methods for Power Allocation and Interference Coordination Simultaneously with MIMO and Full Duplex for Multi-Robot Networks

  • Wang, Guisheng;Wang, Yequn;Dong, Shufu;Huang, Guoce;Sun, Qilu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.216-239
    • /
    • 2021
  • The present work addresses the challenging problem of coordinating power allocation with interference management in multi-robot networks by applying the promising expansion capabilities of multiple-input multiple-output (MIMO) and full duplex systems, which achieves it for maximizing the throughput of networks under the impacts of Doppler frequency shifts and external jamming. The proposed power allocation with interference coordination formulation accounts for three types of the interference, including cross-tier, co-tier, and mixed-tier interference signals with cluster head nodes operating in different full-duplex modes, and their signal-to-noise-ratios are respectively derived under the impacts of Doppler frequency shifts and external jamming. In addition, various optimization algorithms, including two centralized iterative optimization algorithms and three decentralized optimization algorithms, are applied for solving the complex and non-convex combinatorial optimization problem associated with the power allocation and interference coordination. Simulation results demonstrate that the overall network throughput increases gradually to some degree with increasing numbers of MIMO antennas. In addition, increasing the number of clusters to a certain extent increases the overall network throughput, although internal interference becomes a severe problem for further increases in the number of clusters. Accordingly, applications of multi-robot networks require that a balance should be preserved between robot deployment density and communication capacity.

Resource Allocation Strategy of Internet of Vehicles Using Reinforcement Learning

  • Xi, Hongqi;Sun, Huijuan
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.443-456
    • /
    • 2022
  • An efficient and reasonable resource allocation strategy can greatly improve the service quality of Internet of Vehicles (IoV). However, most of the current allocation methods have overestimation problem, and it is difficult to provide high-performance IoV network services. To solve this problem, this paper proposes a network resource allocation strategy based on deep learning network model DDQN. Firstly, the method implements the refined modeling of IoV model, including communication model, user layer computing model, edge layer offloading model, mobile model, etc., similar to the actual complex IoV application scenario. Then, the DDQN network model is used to calculate and solve the mathematical model of resource allocation. By decoupling the selection of target Q value action and the calculation of target Q value, the phenomenon of overestimation is avoided. It can provide higher-quality network services and ensure superior computing and processing performance in actual complex scenarios. Finally, simulation results show that the proposed method can maintain the network delay within 65 ms and show excellent network performance in high concurrency and complex scenes with task data volume of 500 kbits.

A Study on the cost allocation method of the operating room in the hospital (수술실의 원가배부기준 설정연구)

  • Kim, Hwi-Jung;Jung, Key-Sun;Choi, Sung-Woo
    • Korea Journal of Hospital Management
    • /
    • v.8 no.1
    • /
    • pp.135-164
    • /
    • 2003
  • The operating room is the major facility that costs the highest investment per unit area in a hospital. It requires commitment of hospital resources such as manpower, equipments and material. The quantity of these resources committed actually differs from one type of operation to another. Because of this, it is not an easy task to allocate the operating cost to individual clinical departments that share the operating room. A practical way to do so may be to collect and add the operating costs incurred by each clinical department and charge the net cost to the account of the corresponding clinical department. It has been customary to allocate the cost of the operating room to the account of each individual department on the basis of the ratio of the number of operations of the department or the total revenue by each operating room. In an attempt to set up more rational cost allocation method than the customary method, this study proposes a new cost allocation method that calls for itemizing the operation cost into its constituent expenses in detail and adding them up for the operating cost incurred by each individual department. For comparison of the new method with the conventional method, the operating room in the main building of hospital A near Seoul is chosen as a study object. It is selected because it is the biggest operating room in hospital A and most of operations in this hospital are conducted in this room. For this study the one-month operation record performed in January 2001 in this operating room is analyzed to allocate the per-month operation cost to six clinical departments that used this operating room; the departments of general surgery, orthopedic surgery, neuro-surgery, dental surgery, urology, and obstetrics & gynecology. In the new method(or method 1), each operation cost is categorized into three major expenses; personnel expense, material expense, and overhead expense and is allocated into the account of the clinical department that used the operating room. The method 1 shows that, among the total one-month operating cost of 814,054 thousand wons in this hospital, 163,714 thousand won is allocated to GS, 335,084 thousand won to as, 202,772 thousand won to NS, 42,265 thousand won to uno, 33,423 thousand won to OB/GY, and 36.796 thousand won to DS. The allocation of the operating cost to six departments by the new method is quite different from that by the conventional method. According to one conventional allocation method based on the ratio of the number of operations of a department to the total number of operations in the operating room(method 2 hereafter), 329,692 thousand won are allocated to GS, 262,125 thousand won to as, 87,104 thousand won to NS, 59,426 thousand won to URO, 51.285 thousand won to OB/GY, and 24,422 thousand won to DS. According to the other conventional allocation method based on the ratio of the revenue of a department(method 3 hereafter), 148,158 thousand won are allocated to GS, 272,708 thousand won to as, 268.638 thousand won to NS, 45,587 thousand won to uno, 51.285 thousand won to OB/GY, and 27.678 thousand won to DS. As can be noted from these results, the cost allocation to six departments by method 1 is strikingly different from those by method 2 and method 3. The operating cost allocated to GS by method 2 is about twice by method 1. Method 3 makes allocations of the operating cost to individual departments very similarly as method 1. However, there are still discrepancies between the two methods. In particular the cost allocations to OB/GY by the two methods have roughly 53.4% discrepancy. The conventional methods 2 and 3 fail to take into account properly the fact that the average time spent for the operation is different and dependent on the clinical department, whether or not to use expensive clinical material dictate the operating cost, and there is difference between the official operating cost and the actual operating cost. This is why the conventional methods turn out to be inappropriate as the operating cost allocation methods. In conclusion, the new method here may be laborious and cause a complexity in bookkeeping because it requires detailed bookkeeping of the operation cost by its constituent expenses and also by individual clinical department, treating each department as an independent accounting unit. But the method is worth adopting because it will allow the concerned hospital to estimate the operating cost as accurately as practicable. The cost data used in this study such as personnel expense, material cost, overhead cost may not be correct ones. Therefore, the operating cost estimated in the main text may not be the same as the actual cost. Also, the study is focused on the case of only hospital A, which is hardly claimed to represent the hospitals across the nation. In spite of these deficiencies, this study is noteworthy from the standpoint that it proposes a practical allocation method of the operating cost to each individual clinical department.

  • PDF