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Abstract   It is important for urban planners and policy makers to understand complex, 

diverse urban demands and social structure, but this is not easy due to lack of data that 

represents the dynamics of residents at micro-geographical level. This paper explores 

how to create population data at at a micro-level by allocating population data to building. 

It attempted to allocate population data stored in a grid layer (100 meters by 100 meters) 

into a building footprint layer that represents the appearance of physical buildings. For 

the allocation, this paper describes a systemic approach that classifies grid cells into five 

prototypical patterns based on the composition of residential building types in a grid cell. 

This approach enhances allocation accuracy by accommodating heterogeneity of urban 

space rather than relying on the assumption of uniform spatial homogeneity of 

populations within an aerial unit. Unlike the methods that disaggregate population data 

to the parcel, this approach is more applicable to Asian cities where large multifamily 

residential parcels are common. However, it should be noted that this paper does not 

demonstrate the validity of the allocated population since there is a lack of the actual data 

available to be compared with the current estimated population. In the case of water and 

electricity, the data is already attached to an individual address, and hence, it can be 

considered to the purpose of the validation for the allocation. By doing so, it will be 

possible to identify innovative methods that create a population distribution dataset 

representing the comprehensive and dynamic nature of the population at the micro 

geographical level. 

 

Keywords   population allocation, prototypical patterns, disaggregate populations to 

building, buiding index 

                                        
Submitted, August 22, 2020; Accepted, August 29, 2020 

* Corresponding, Professor, Department of Urban and Regional Planning, California State 

Polytechnic University, Pomona; dohyungkim@cpp.edu. 

** Director, MUREPA Korea, didi9535@murepa.com. 

Asian Journal of Innovation and Policy (2020) 9.2:223-239 

DOI: https://doi.org/10.7545/ajip.2020.9.2.223 



Asian Journal of Innovation and Policy (2020) 9.2:223-239 

224 

 

I. Introduction 

 
Urbanization predominantly results in the horizontal or vertical growth of 

urban areas. According to the United Nations, 55.3 percent of the world 

population lived in a city in 2018, and it was projected that about 60 and 70 

percent of the world population would live in a city by 2030 and 2050, 

respectively (U.N., 2019). While cities have physically grown, an urban 

phenomenon associated with the ecology of cities have become complicated. 

The emergence of a new, complex urban ecology requires to integrate a diversity 

of approaches from a broad set of disciplines to advance understanding of cities 

as complex human settlement systems (Alberti, 2016). Cities across the globe 

exhibit unique patterns, reflecting diverse socio-economic and biophysical 

characteristics, as well as their history and stage of development (Bai, 2003). 

The conventional, underlying mechanisms and universal laws of the urban 

system hardly function with the dynamic urban systems and people’s behavior.  

One of the primary reasons for the complexity is complex interactions among 

multiple heterogeneous residents and components across multiple scales. As 

many, diverse people migrate into cities, city dwellers’ socio-demographic 

characteristics become complex. Consequentially, their demands on urban 

services and infrastructure and their social dynamic become complex. Further, 

their decisions are also highly heterogeneous (Waddell, 2013). These decisions 

are influenced by their diverse characteristics, perceptions, and preferences and 

directly and indirectly affect the urban system (Polsky et al., 2014). 

One of difficulties that urban planners and policy makers experience is the 

lack of the data that represents the features of the individual resident. In general, 

the data available for policy makers and urban planners is aggregated into a 

relatively large geographical area such as neighborhood, city, or county. 

Therfore it is hard for them to have a good understanding on residents’  

demands and concerns occurred at micro-geographical areas. Residents’ socio-

demographic data is hardly available at the individual level or even at the micro-

geographical level. In the U.S., for example, much socio-demographic data is 

typically available by census tract and/or traffic analysis zone (TAZ), which 

generally encompasses a population between 2,500 to 8,000 people (U.S. 

Census, 1994). In some cases, although exhaustive individual data are available, 

they are excluded from the public domain due to privacy reasons. For this reason, 

many planners and scholars have attempted to identify the micro-dynamics of 

socio-demographic features in a city or region. The purposes of the attempts are 

to understand persons’ population attributes and the spatial location at the 

individual level. 

The synthetic population is an example of individual population attributes. A 
synthetic population is a simplified microscopic representation of the actual 



Asian Journal of Innovation and Policy (2020) 9.2:223-239 

225 

 

population (Beckman et al., 1996). Although all the population attributes are not 

included, it represents microscopic details of the population since the synthetic 

population matches various statistical distributions of the actual population (Guo 

and Bhat, 2007; Lenormanda and Deffuant, 2013). In general, the goal of the 

synthetic population is to estimate the population attributes of both individuals 

and their organizations in households. While the synthetic population achieved 

the reliability of the estimated microscopic attributes of the population, the 

identification of each individual’s accurate residential location remains at an 

early stage. Persons’ locational data can be the best source of various urban 

planning practices, from understanding travel behavior and urban development 

patterns to uncovering the mechanisms that determine the dynamics of urban 

ecosystem services. For this reason, a group of scholars interconnects the 

synthetic population with large scale survey data such as the National Household 

Travel Survey (NHTS) data (Mohammadian and Zhang, 2008). However, due 

to the high cost and time-consuming data processing, it is hard to collect the data 

as frequently as needed and as completely as possible. Dasymetric mapping is a 

popular technique that allows allocating aggregated census population counts to 

likely habitable land uses.  

Dasymetric mapping is a geospatial technique to more accurately distribute 

data that has been assigned to arbitrary boundaries, such as census blocks, using 

additional information such as land cover, but it relies upon the assumption of 

uniform population density since it still estimates populations at an area-scale 

(Michanowicz et al., 2019). Some studies report the approach that allocates 

aggregated population data into a smaller geographical unit such as census block, 

urban block, or property parcel (Michanowicz et al., 2019; Kim, 2012; Kim, 

2010). The studies disaggregate U.S. Census populations by allocating an 

average person per household to geospatially-identified residential housing units 

after sorting out residential properties cross-referencing multiple datasets such 

as zoning, land-use, and property parcel. Employing address as the primary 

locational information, the studies typically attempted to allocate populations to 

residential parcels. However, the accuracy of the allocation remains 

unconfirmed.  

Furthermore, this allocation method is not practical in many Asian countries 

like Korea, while being applicable to cities in the U.S., prelimarily dominated 

by singl family residential parcels (Kim et al., 2012). In general, sing family 

residential parcel typically refers a small, individual property occupied by one 

dwelling building. Unlike the U.S. cities, however, it is common for multiple 

buildings to be placed in a large residential parcel in Asian cities (e.g., large 

condominium complexes). Therefore, population being allocated to large multi-

family residential parcels hardly represents local dyanmics of the residents. 
Therefore, parcl is not an ideal unit of allocation in Asian cities.  



Asian Journal of Innovation and Policy (2020) 9.2:223-239 

226 

 

The purpose of this paper is to explore the methodology that allocates 

population data to a geographical unit at a micro-level. Unlike much previous 

research that attempted to allocate population data to a parcel level, this paper 

demonstrates the allocation of the population to a building level. Taking the City 

of Jeonju, Korea, as its study area, this paper attempted to allocate population 

data stored in a grid layer (100 meters by 100 meters) into a building footprint 

layer that represents the appearance of physical buildings. In order to achieve 

this goal, this paper classifies grid cells into five prototypical patterns based on 

the composition of residential building types in a grid cell. Then, it develops a 

population allocation method for each prototype of the grid cell. 

 

 

II. Study Context 
 

The geographical context of this paper is the City of Jeonju, Korea. Jeonju is 

a major city located in Jullabook-Do (Figure 1). Jeonju is a basin surrounded by 

mountains and has an area of 206.22km2 and a population of 651,744 as of 2016. 

In particular, Jeonju city has an urban and rural complex structure. They are 

appropriately located in the center of the city. In Korea, more than 70% of the 

entire country is composed of mountainous areas, and cities and rural areas are 

formed in the remaining areas. The geopolitical characteristics of Jeonju have 

both urban and rural types in Korea, and there is an opportunity for 

representativeness appropriate to analyze the characteristics of land use and 

population activities. In addition, Jeonju has an incentive for the population and 

tourism industry as it contains the representative traditional architecture area of 

Korea called the Hanok Village. Based on these characteristics of population 

incentives, it is highly probable as a target site for various simulations of urban 

socio-economic activities. In particular, the headquarter of the Korea Land and 

Geospatial Informatix (LX) Corporation, which deals with spatial information 

as to its primary business model, moved to Jeonju, various active research 

activities are undergoing. For example, various mutual agreements have been 

made with Jeonju to solve social problems using digital twin technology among 

the 4th industrial revolution technologies.  

For the core simulation function of digital twin technologies, it is essential to 

allocate the population information to the digitalized buildings located in an area. 

Based on the current location of LX and available data that can be collected from 

Jeonju, we establish primary data from individual activities for solving various 

social problems, targeting on Jeonju. 
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Figure 1 The Study Area: Jeonju-city, Korea 
 

 

Ⅲ. Data 
 

The primary datasets for this study can be classified into two distinct 

categories that represent the population and physical urban space. This paper 

collected two datasets for the population. The first population dataset is the 

population data from Statistics Korea. This data is Korean census data, which is 

the most reliable population data source in Korea. However, since the data is 

aggregated by the administrative boundary called “Dong,” the geographical 

extent of the data is too big to be employed for population allocation to buildings. 

Dong is comparable to census tract in the U.S. For example, the average area of 

the census Tracts in the city of Los Angeles is 1.34 square kilometers, while the 

average area of Dongs in the City of Jeonju is about 2.46 square kilometers. For 

this reason, this data set was only utilized for the purpose of confirmation and 

validation of the allocated data at the macro level. The population dataset used 

for population allocation was the population data collected from National Plan 

Policy Indicators.  
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The National Plan Policy Indicators provide population, buildings, land, and 

national land indicators using the National Territory Information Platform site1 

operated by the National Geographic Information Institute based on a statistical 

grid map for policy establishment. For the population data, which is the basis 

for this analysis, we could collect the data at the administrative district and grid 

units. Unlike the population data from Statistics Korea, the geographical unit of 

this data is a gird cell whose size is 100 meters by 100 meters. This micro-level 

population data allows scaling down population data to the individual building 

level. 

The data representing physical urban space includes property parcel and 

physical building data. While the property parcel data delineates the legal 

boundary of a property, the building data includes not only the footprint of 

physical buildings, but also other attributes including address, zoning codes, and 

use classifications. These datasets were collected from the National Spatial Data 

Infrastructure Portal. National Spatial Data Infrastructure Portal collects data 

related to spatial information at the national level, such as digital topographic 

maps, including physical building data and cadastral maps, including parcel data, 

and It provides it in the form of an open market. 

 

 

Ⅳ. The Typology of Population Grids 

 
Prior to the population allocation, this paper removed building footprints that 

resided in non-residential parcels such as commercial, industrial, or institutional 

parcels. Then, the first step of the population data allocation into each building 

footprint is to classify the population grid into five types based on the building 

types within each grid (see Figure 2). Since the paper develops and applies a 

unique allocation method to each grid type, it is important to identify the 

typologies prior to the allocation. The process of the grid classification starts 

with a spatial analysis applied to single-family buildings and parcels. It was 

observed that there were multiple buildings in one single-family property. It is 

common that other buildings than a residential building such as barn and storage 

exist in a single-family property, especially in rural areas. In order to allocate 

population to only residential buildings, this paper screened out only one 

residential building per each single-family parcel. This process was depended 

on the visual observation that compares the building footprint with aerial 

photography. This allows identifying residential buildings in single-family 

properties. Additionally, this paper clearly identified low-density and high-

                                        
1 http://map.ngii.go.kr/ms/map/NlipMap.do?tabGb=statsMap 
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density multi-family buildings by querying the zoning code in the attribute of 

the building footprint data. 

It was possible to classify the population grid into five types by spatially 

associating the building footprint with the population grid. They include  

 

 Type 1: Only one building exists in a grid cell 

 Type 2: Multiple buildings exist in a grid cell, but all of them are single-

family residential buildings 

 Type 3: Multiple buildings exist in a grid cell, but all of them are either 

low-density multi-family residential buildings or high-density multi-

family residential buildings 

 Type 4: Multiple buildings exist in a grid cell and they are mix with low-

density and high-density multi-family residential buildings and  

 Type 5: Multiple buildings exist in a grid cell and they are mix with three 

different types of residential buildings. 

 

 

  

Figure 2 Flowchart of the Identification of Grid Typologies 
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Ⅴ. Population Allocation by Each Typology 
 

After the typology of the population grid was identified, this paper treated each 

grid type individually and applied a distinct mathematical formula to each type 

of typology. In the case of Type 1, the allocation is straightforward. Since there 

is only one building in a grid cell, the entire population of the gird cell was 

automatically allocated to the building. Thus, the population per building of 

Type 1 can be expressed using the following formula. 

 

POPj = POPg 

 
Where POPj = the population of building j 

POPg = the total population of a grid cell  

 

Type 2 refers to a case that although there are multiple buildings in a grid cell, 

the type of the buildings is consistent and they are single-family residential 

buildings. Thus, it is logical to evenly allocate the population of a grid cell to the 

buildings in the grid cell by dividing the population of a grid cell by the number 

of buildings in the cell, where we assumed that one household resides in a 

building regardless of the size of the building. This method can be expressed 

using the following formula. 

 

𝑃𝑂𝑃𝑗 =
 𝑃𝑂𝑃𝑔

𝐵𝐿𝐷𝐺𝑐

 

 
Where POPj = the population of building j 

POPg = the total population of a grid cell  

BLDGc = the number of buildings in a grid cell  

 

After this allocation is finished, this paper computes the average value of the 

population per single-family residential building by Dong (AVGPOPsf). While 

the average value represents a generic estimation of population per single-family 

residential building in the study area, it also reflects the local variations of the 

population since it is aggregated to each Dong. The average value will be used 

for the calculation of Type 5.   

Type 3 is a similar case to Type 2. Unlike Type 2, Type 3 refers to a case that 

the type of residential buildings in a grid cell is consistently multi-family 

residential buildings, either low-density residential buildings or high-density 

residential buildings. Therefore, the method of even allocation adopted for Type 

2 is also applicable to Type 3 since there is only one type of residential buildings 

in a grid cell. Unlike a single-family residential building, however, multiple 

households live in a multi-family residential building. Therefore, it is logical to 
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hypothesize that the number of residents positively correlates with the size of 

buildings. Based on the hypothesis, the population of a grid cell is divided by 

the total building area rather than the number of buildings. The allocation 

method of Type 3 can be expressed using the following formula. 

 

𝑃𝑂𝑃𝑗 = 𝑃𝑂𝑃𝑔 ×
 𝐵𝐿𝐷𝐺𝑗

𝐵𝐿𝐷𝐺𝑇

 

 
Where POPj = the population of building j 

POPg = the total population of a grid cell  

BLDGj = the area of building j (square meters)  

BLDGT = the total area of buildings in a grid cell (square meters)  

 

In the same vein as Type 2, this paper computes the average values of 

population per low-density (AVGPOPlmf) and high-density (AVGPOPhmf) 

multi-family residential buildings by Dong after completing the Type 3 

allocation. The average values represent the average number of people per 100 

square meters of low-density and high-density multi-family residential buildings. 

Type 4 is one of the common residential patterns in the study area. This type 

represents the areas where both low-density and high-density multi-family 

residential buildings coexist. For the allocation of Type 4, the average values 

computed in Type 3, AVGPOPlmf and AVGPOPhmf, are utilized. This paper 

initiates the allocation by assigning an AVGPOPlmf or AVGPOPhmf value to each 

individual low-density or high-density multi-family residential building, 

respectively. Then, this paper computes the sum of the assigned population by 

grid cell and measures the difference between the sum and the total population 

of the grid cell. Finally, this paper adjusts the population assigned to each 

building by applying the ratio of the difference. For example, let’s assume that 

the sum of the assigned population is 900 after applying the average population 

per low-density and high-density multi-family residential building to all the 

buildings in a grid cell. If the total population of the grid cell is 1,000, then there 

is 10 percent difference between the assigned population and the total of the grid 

cell. Thus, the final population per building is calculated by increasing the 

assigned population by 10 percent. The allocation method of Type 4 can be 

expressed using the following formula. 

 

𝑃𝑂𝑃𝑗 =
 𝐵𝑙𝑑𝑔𝑗 × 𝐴𝑉𝐺𝑃𝑂𝑃𝑙𝑚𝑓

100
×

 𝑃𝑂𝑃𝑎

𝑃𝑂𝑃𝑔

  

𝑖𝑓 𝑙𝑜𝑤 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑚𝑢𝑙𝑡𝑖𝑓𝑎𝑚𝑖𝑙𝑦 𝑟𝑒𝑠𝑖𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑢𝑖𝑙𝑖𝑛𝑔 
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𝑃𝑂𝑃𝑗 =
 𝐵𝑙𝑑𝑔𝑗 × 𝐴𝑉𝐺𝑃𝑂𝑃ℎ𝑚𝑓

100
×

 𝑃𝑂𝑃𝑎

𝑃𝑂𝑃𝑔

 

𝑖𝑓 ℎ𝑖𝑔ℎ − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑚𝑢𝑙𝑡𝑖𝑓𝑎𝑚𝑖𝑙𝑦 𝑟𝑒𝑠𝑖𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑢𝑖𝑙𝑖𝑛𝑔 

 

Where POPj = the population of building j 

POPg = the total population of a grid cell  

POPa = the total assigned AVGPOPlmf and AVGPOPhmf of a grid cell  

BLDGj = the area of building j (square meters)  

AVGPOP lmf = the average population per low-density multi-family  

residential building of a grid cell 

AVGPOPhmf = the average population per high-density multi-family  

residential building of a grid cell 

 

Lastly, Type 5 is the most complex mix of residential buildings, but this is a 

type commonly found. Since Type 5 is a combination of Type 2 and 4, the 

method of population allocation for Type 5 is similar to the methods adopted for 

Type 2 and 4. First, this paper assigns AVGPOPsf to each single-family 

residential building. Then, this paper computes the difference between the sum 

of the assigned AVGPOPsf and the total population of a grid cell. The difference 

indicates the number of people who live in multi-family residential buildings. 

Thus, the difference is allocated to multi-family residential buildings employing 

the method used for the allocation of Type 4. This method can be expressed 

using the following formula.   

 

𝑃𝑂𝑃𝑗 = 𝐴𝑉𝐺𝑃𝑂𝑃𝑠𝑓   𝑖𝑓 𝑠𝑖𝑛𝑔𝑙𝑒 − 𝑓𝑎𝑚𝑖𝑙𝑦 𝑟𝑒𝑠𝑖𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑢𝑖𝑙𝑖𝑛𝑔 

 

                    𝑃𝑂𝑃𝑗 =
 𝐵𝑙𝑑𝑔𝑗 × 𝐴𝑉𝐺𝑃𝑂𝑃𝑙𝑚𝑓

100
×

 𝑃𝑂𝑃𝑎

𝑃𝑂𝑃𝑔 − ∑ 𝐴𝑉𝐺𝑃𝑂𝑃𝑠𝑓

 

𝑖𝑓 𝑙𝑜𝑤 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑚𝑢𝑙𝑡𝑖𝑓𝑎𝑚𝑖𝑙𝑦 𝑟𝑒𝑠𝑖𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑢𝑖𝑙𝑖𝑛𝑔 

 

                    𝑃𝑂𝑃𝑗 =
 𝐵𝑙𝑑𝑔𝑗 × 𝐴𝑉𝐺𝑃𝑂𝑃ℎ𝑚𝑓

100
×

 𝑃𝑂𝑃𝑎

𝑃𝑂𝑃𝑔 − ∑ 𝐴𝑉𝐺𝑃𝑂𝑃𝑠𝑓

 

𝑖𝑓 ℎ𝑖𝑔ℎ − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑚𝑢𝑙𝑡𝑖𝑓𝑎𝑚𝑖𝑙𝑦 𝑟𝑒𝑠𝑖𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑢𝑖𝑙𝑖𝑛𝑔 
 
Where POPj = the population of building j 

POPg = the total population of a grid cell  

POPa = the total assigned AVGPOPlmf and AVGPOPhmf of a grid cell  

BLDGj = the area of building j (square meters)  

AVGPOPsf = the average population per single-family residential building of a  

grid cell 

AVGPOPlmf = the average population per low-density multi-family residential  

building of a grid cell 

AVGPOPhmf = the average population per high-density multi-family residential  
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building of a grid cell 

 

The typology classification, followed by the population allocation per each 

type, allows successfully allocating the population values stored in the grid 

dataset to the building footprint dataset (Figure 3). 
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Population Distribution by a Grid Cell 

 
Population Distribution by Residential Building 

 

                Low     Medium     High 

Number of People  

 

Figure 3 Before- and After-Comparison of Population Allocation 
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Ⅵ. Discussions 
 

The number of residents in each residential building cannot be perfectly 

measured without conducting labor-intensive surveys or accessing sensitive 

private data. However, this study attempted to estimate the population with 

logical and reasonable steps on the building footprint only based on the 

secondary data sources such as building volume data and building use code data. 

Because the methods demonstrated in this paper used residentially-censored and 

publicly-available location data with a persons-per-building estimate from the 

residing grid cell, this is entirely different and opposed to an aggregate multi-

county average and/or dasymetric mapping. This approach also differs from 

previous research that allocates populations to parcels. Since there are large 

number of condominium complexes consisted of multiple high-raised 

condominium buildings in the study area, our suggestion is innovative is 

especially meaningful for the areas that have high density. Indeed, it can 

improve the allocation accuracy of the complexes in comparison to the 

traditional methods that disaggregate populations to parcels. Another important 

contribution of this study to the regional and spatial systems is that the approach 

does not rely on the assumption of uniform spatial homogeneity of populations 

within an aerial unit. The results produced by this paper better represent 

residence in discrete buildings in the real world rather than continuously across 

space. Therefore, this paper accounts for the variations of residence in reality by 

applying multiple layers of criteria, including five residential typologies in a grid 

cell and three residential building types. This paper also overcomes the issue of 

potential temporal misalignment by employing the population data and building 

footprint data in the same year, 2016. We believe this approach could reach to 

develop a cornerstone to construct a spatial digital twin model for a city to be 

applied to simulate if a regional innovation system can be achieved in the target 

region or not.     

However, the issue of misclassification was identified because the population 

allocation relies on the secondary datasets only from three different 

organizations. It is noteworthy that the discrepancy between building footprint 

and property parcel layers was observed in the study area, especially in rural 

areas. While the building footprint layer tends to capture physical domicile 

locations better, it does not align well with parcel boundaries. Therefore, this 

paper conducted intensive visual observations and analyses in order to match 

building footprints with the parcel that the footprints reside. It is also important 

to note that the allocated populations represent the static, nighttime residential 

population- based on information on where people sleep. There is recent 

research that captures the snapshot of people’s trajectories and movements based 

on big data like cell-phone signals, credit card records, unmanned aerial vehicle 

(UAV), or social media (Kim, 2010; Kim and Chanchlani, 2018; Chandrasekar, 
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2015). Unlike the research, this paper underestimates the mobility of people, and 

the dynamic nature of populations in space and time. Nonetheless, the method 

proposed by this paper has its advantage in terms of the capability to build 

comprehensive, consistent, and longitudinal micro population data since it 

utilizes public data that has been regularly published a long period of time and 

covers the entire population in the county.  

On the other hand, this paper does not demonstrate the validity of the allocated 

population. Since there is a lack of data that represents the actual number of 

residents in each building due to the privacy issue in Korea, it is hard to confirm 

the accuracy of the allocation. Water and electricity usage data per household 

can be a reasonable proxy data that can represent the number of residents in the 

household. Since the data is already attached to an individual address, it is also 

relatively easy to spatially tie to the building that the household resides. 

Therefore, it can be considered to validate the allocation employing the proxy 

data, even though it would be useful to compare our estimates with actual data.  

 

 

Ⅶ. Conclusion 
 

This paper proposed a systemic approach to disaggregate census population 

data into building footprints, which are the most acceptable geographical unit in 

terms of residential location. Employing population data stored in a grid layer, 

this paper explored the classification of five prototypical residential patterns in 

a grid cell and the mathematical formulas that allocate aggregated population 

values to the individual building footprint. This paper is an exemplary case that 

demonstrates the allocation of census population to discrete buildings 

accounting for variations and heterogeneity of population distribution in the 

real-world.  

As urban phenomena become complicated, urban scientists and planners have 

introduced advanced mathematical and economic models, which are applicable 

to the exploration of urban systems and the discovery of new insights for 

planning and policy decision-making. These models tend to run with large 

datasets that not only cover extended geographical areas, but also represent the 

details of sophisticated dynamics at the local level. This paper demonstrated an 

approach to support the models by feeding the distribution of populations at the 

micro-level, achieving a data-based system innovation.   

It is noteworthy to carefully condsider urban built environment when selecting 

a disaggregation method of population. Much of previous research reports the 

methods that allocate population data to proprety parcel and that were primarily 

developed based on the case of U.S. cities. Thus, the adoptability of the methods 

to Asian cities remains questionable since the structure of urban environment 

and land use systems in Asian cities differ from ones in U.S. cities. Thus, it is 
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important for urban planners and scholars in Asian countries to develop 

customized disaggregation methods that fit with their cities.  

With the emergence of big data and data analytics technologies, the volume 

and diversity of urban data are increasing rapidly. The influx of new data and 

analysis methods will become faster and richer due to the digitalization of 

administrative and operational records, and the proliferation of urban sensors 

and Internet-of-Things technologies. It is plausible to envision that the 

technologies will allow collecting and identifying the population attributes of 

persons at the individual level. Therefore, it is important for scholars working in 

the urban system to proactively link emerging technologies to conventional 

datasets like census data. By doing so, it will be possibly identify innovative 

methods that create a population distribution dataset representing the 

comprehensive and dynamic nature of population at the micro geographical 

level and combine it with our real life. 
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