• 제목/요약/키워드: Allocation Problem

검색결과 1,026건 처리시간 0.024초

Energy-Efficiency Power Allocation for Cognitive Radio MIMO-OFDM Systems

  • Zuo, Jiakuo;Dao, Van Phuong;Bao, Yongqiang;Fang, Shiliang;Zhao, Li;Zou, Cairong
    • ETRI Journal
    • /
    • 제36권4호
    • /
    • pp.686-689
    • /
    • 2014
  • This paper studies energy-efficiency (EE) power allocation for cognitive radio MIMO-OFDM systems. Our aim is to minimize energy efficiency, measured by "Joule per bit" metric, while maintaining the minimal rate requirement of a secondary user under a total power constraint and mutual interference power constraints. However, since the formulated EE problem in this paper is non-convex, it is difficult to solve directly in general. To make it solvable, firstly we transform the original problem into an equivalent convex optimization problem via fractional programming. Then, the equivalent convex optimization problem is solved by a sequential quadratic programming algorithm. Finally, a new iterative energy-efficiency power allocation algorithm is presented. Numerical results show that the proposed method can obtain better EE performance than the maximizing capacity algorithm.

혼합이진정수목표계획법(混合二進整数目標計劃法)을 이용(利用)한 다수목표(多数目標)의 설비입지선정(設備立地選定) 및 해당문제(該當問題)에 관(関)한 연구(硏究) (A Mixed Zero-One Integer Goal programming Approach to Facility Location-Allocation Problem with Multiple Objectives)

  • 강인선;윤덕균
    • 대한산업공학회지
    • /
    • 제10권2호
    • /
    • pp.45-50
    • /
    • 1984
  • This paper is concerned with the facility location-allocation problem (FLAP) with multiple objectives. A branch-and-bound procedure is presented to solve the mixed zero-one integer goal programming problem which is to determine facility locations from given candidate locations and to allocate facility capacity to given customer markets simultaneously. A numercial example is given to illustrate this procedure.

  • PDF

Channel Allocation for the Low Earth Orbit Satellite Systems

  • Kim, Soo-Hyun;Kim, Soo-Hyun;Chang, Kun-Nyeong
    • 한국경영과학회지
    • /
    • 제22권4호
    • /
    • pp.37-50
    • /
    • 1997
  • We consider the channel allocation problem for the earth orbit (LEO) satellite systems. This problm is known to be NP-complete and a couple of heuristic algorithms have been developed. In this paper, we convert the problem into a simpler form through the concept of pattern. And we suggest another algorithm based on Simulated Annealing for this simplified problem. The results of performance comparison show that our method works very well. Simulation results are reported.

  • PDF

Prioritized Channel Allocation for Cellular Mobile Systems Using Simulated Annealing

  • Chang, Kun-Nyeong
    • 한국경영과학회지
    • /
    • 제23권3호
    • /
    • pp.37-47
    • /
    • 1998
  • Under the cutoff priority discipline, the prioritized channel allocation problem is formulated, which minimizes the overall blocking probability while ensuring the co-channel interference constraints. To deal with the problem more conveniently, the concept of pattern is used. A simulated annealing approach is applied to the problem, and computational experiments show that a high-quality solution is obtained.

  • PDF

Interference-limited Resource Allocation Algorithm in Cognitive Heterogeneous Networks

  • Zhuang, Ling;Yin, Yaohu;Guan, Juan;Ma, Xiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1471-1488
    • /
    • 2018
  • Interference mitigation is a significant issue in the cognitive heterogeneous networks, this paper studied how to reduce the interference to macrocell users (MU) and improve system throughput. Establish the interference model with imperfect spectrum sensing by analyzing the source of interference complexity. Based on the user topology, the optimize problem was built to maximize the downlink throughput under given interference constraint and the total power constraint. We decompose the resource allocation problem into subcarrier allocation and power allocation. In the subcarrier assignment step, the allocated number of subcarriers satisfies the requirement of the femtocell users (FU).Then, we designed the power allocation algorithm based on the Lagrange multiplier method and the improved water filling method. Simulation results and performance analyses show that the proposed algorithm causes less interference to MU than the algorithm without considering imperfect spectrum sensing, and the system achieves better throughput performance.

A Relay Selection and Power Allocation Scheme for Cooperative Wireless Sensor Networks

  • Qian, Mujun;Liu, Chen;Fu, Youhua;Zhu, Weiping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권4호
    • /
    • pp.1390-1405
    • /
    • 2014
  • This paper investigates optimal relay selection and power allocation under an aggregate power constraint for cooperative wireless sensor networks assisted by amplify-and-forward relay nodes. By considering both transmission power and circuit power consumptions, the received signal-to-noise ratio (SNR) at the destination node is calculated, based on which, a relay selection and power allocation scheme is developed. The core idea is to adaptively adjust the selected relays and their transmission power to maximize the received SNR according to the channel state information. The proposed scheme is derived by recasting the optimization problem into a three-layered problem-determining the number of relays to be activated, selecting the active relays, and performing power allocation among the selected relays. Monte Carlo simulation results demonstrate that the proposed scheme provides a higher received SNR and a lower bit error rate as compared to the average power allocation scheme.

분산 컴퓨터 시스템에 있어서의 화일 할당 알고리듬에 관한 연구 (A Study on File Allocation Algorithm in Distributed Computer Systems)

  • 홍진표;임제탁
    • 대한전자공학회논문지
    • /
    • 제27권2호
    • /
    • pp.118-125
    • /
    • 1990
  • 분산 컴퓨터 시스템에서 정보 화일을 효율적으로 관리, 운용하기 위한 화일 할당 문제의 최적해를 구하는 화일 할당 알고리듬을 제안한다. 컴퓨터 노드(site)가 많은 경우 화일 할당에 많은 시간이 소요되므로 선 할당(preassignment)을 수행하여 문제의 규모를 축소하고 계산시간을 개선한다. 할당이 진행중인 상태의 표시치(representative value)를 정확하게 나타내기 위해 기대값을 이용한 평가치 계산기법을 제안하고 빠른 시간에 최적 할당이 이루어지도록 후보 노드(candidate node)에 대한 선택기준(selection criteria)을 설정한다. 선택기준에 의해 각 노드의 화일 할당 여부를 결정하고 최종 평가치가 할당 상태의 전체 비용을 나타낸다. 제안한 알고리듬은 다항식 시간(polynomial time)알고리듬이며 여러 예제에 실현한 결과 할당 소요시간이 개선되고 기존의 할당 알고리듬과 비교하여 최적해를 구하는데 있어 우수함을 나타냈다.

  • PDF

Resource Allocation based on Quantized Feedback for TDMA Wireless Mesh Networks

  • Xu, Lei;Tang, Zhen-Min;Li, Ya-Ping;Yang, Yu-Wang;Lan, Shao-Hua;Lv, Tong-Ming
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제2권3호
    • /
    • pp.160-167
    • /
    • 2013
  • Resource allocation based on quantized feedback plays a critical role in wireless mesh networks with a time division multiple access (TDMA) physical layer. In this study, a resource allocation problem was formulated based on quantized feedback for TDMA wireless mesh networks that minimize the total transmission power. Three steps were taken to solve the optimization problem. In the first step, the codebook of the power, rate and equivalent channel quantization threshold was designed. In the second step, the timeslot allocation criterion was deduced using the primal-dual method. In the third step, a resource allocation scheme was developed based on quantized feedback using the stochastic optimization tool. The simulation results show that the proposed scheme not only reduces the total transmission power, but also has the advantage of quantized feedback.

  • PDF

Block-Level Resource Allocation with Limited Feedback in Multicell Cellular Networks

  • Yu, Jian;Yin, Changchuan
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.420-428
    • /
    • 2016
  • In this paper, we investigate the scheduling and power allocation for coordinated multi-point transmission in downlink long term evolution advanced (LTE-A) systems, where orthogonal frequency division multiple-access is used. The proposed scheme jointly optimizes user selection, power allocation, and modulation and coding scheme (MCS) selection to maximize the weighted sum throughput with fairness consideration. Considering practical constraints in LTE-A systems, the MCSs for the resource blocks assigned to the same user need to be the same. Since the optimization problem is a combinatorial and non-convex one with high complexity, a low-complexity algorithm is proposed by separating the user selection and power allocation into two subproblems. To further simplify the optimization problem for power allocation, the instantaneous signal-to-interference-plus-noise ratio (SINR) and the average SINR are adopted to allocate power in a single cell and multiple coordinated cells, respectively. Simulation results show that the proposed scheme can improve the average system throughput and the cell-edge user throughput significantly compared with the existing schemes with limited feedback.

PSO-based Resource Allocation in Software-Defined Heterogeneous Cellular Networks

  • Gong, Wenrong;Pang, Lihua;Wang, Jing;Xia, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권5호
    • /
    • pp.2243-2257
    • /
    • 2019
  • A heterogeneous cellular network (HCN) is useful to increase the spectral and energy efficiency of wireless networks and to reduce the traffic load from the macro cell. The performance of the secondary user equipment (SUE) is affected by interference from the eNodeB (eNB) in a macro cell. To decrease the interference between the macro cell and the small cell, allocating resources properly is essential to an HCN. This study considers the scenario of a software-defined heterogeneous cellular network and performs the resource allocation process. First, we show the system model of HCN and formulate the optimization problem. The optimization problem is a complex process including power and frequency resource allocation, which imposes an extremely high complexity to the HCN. Therefore, a hierarchical resource allocation scheme is proposed, which including subchannel selection and a particle swarm optimization (PSO)-based power allocation algorithm. Simulation results show that the proposed hierarchical scheme is effective in improving the system capacity and energy efficiency.