• Title/Summary/Keyword: Alkylphenols

Search Result 43, Processing Time 0.022 seconds

Detection of Endocrine-Disrupting Chemicals in Fish and the Use of Fish Vitellogenin as a Biomarker (어류를 이용한 내분비계 장애물질 검출 및 Biomarker로서 Vitellogenin의 이용)

  • Yoon, Seok-Joo;Kim, Il-Chan;Yoon, Yong-Dal;Lee, Jae-Seong
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.97-107
    • /
    • 2003
  • Fish vitellogenin produces in female liver during oogensesis through estradiol cycle, and produces even in male liver by endocrine-disrupting chemicals (EDCs) such as alkylphenols. The resulting effects of EDCs lead to the low fecundity of female and the feminization (eg. shrinkage of testis) in male. Especially, the production of vitellogenin in male indicates the environmental contamination of EDCs, resulting in the modulation of gene expression profiles and the monitoring of environmental contamination at specific area. In this paper, we suggest that fish vitellogenin is useful for biomonitoring for environmental contamination and would be substantially useful as a biomarker for a detection of EDCs in aquatic environment.

Potency of cashew nut shell liquid in rumen modulation under different dietary conditions and indication of its surfactant action against rumen bacteria

  • Oh, Seongjin;Suzuki, Yasuyuki;Hayashi, Shusuke;Suzuki, Yutaka;Koike, Satoshi;Kobayashi, Yasuo
    • Journal of Animal Science and Technology
    • /
    • v.59 no.11
    • /
    • pp.27.1-27.7
    • /
    • 2017
  • Background: Cashew nut shell liquid (CNSL) is an agricultural byproduct containing alkylphenols that has been shown to favorably change the rumen fermentation pattern only under experimentally fixed feeding conditions. Investigation of CNSL potency in rumen modulation under a variety of feeding regimens, and evidence leading to the understanding of CNSL action are obviously necessary for further CNSL applications. The objective of this study was to evaluate the potency of CNSL for rumen modulation under different dietary conditions, and to visually demonstrate its surfactant action against selected rumen bacteria. Methods: Batch culture studies were carried out using various diets with 5 different forage to concentrate (F:C) ratios (9:1, 7:3, 5:5. 3:7 and 1:9). Strained rumen fluid was diluted with a buffer and incubated with each diet. Gas and short chain fatty acid (SCFA) profiles were characterized after 18 h incubation at $39^{\circ}C$. Monensin was also evaluated as a reference additive under the same conditions. Four species of rumen bacteria were grown in pure culture and exposed to CNSL to determine their morphological sensitivity to the surfactant action of CNSL. Results: CNSL supplementation decreased total gas production in diets with 5:5 and 3:7 F:C ratios, whereas the F:C ratio alone did not affect any gas production. Methane decrease by CNSL addition was more apparent in diets with 5:5, 3:7, and 1:9 F:C ratios. An interactive effect of CNSL and the F:C ratio was also observed for methane production. CNSL supplementation enhanced propionate production, while total SCFA production was not affected. Monensin decreased methane production but only in a diet with a 1:9 F:C ratio with increased propionate. Studies of pure cultures indicated that CNSL damaged the cell surface of hydrogen- and formate-producing bacteria, but did not change that of propionate-producing bacteria. Conclusion: CNSL can selectively inhibit rumen bacteria through its surfactant action to lead fermentation toward less methane and more propionate production. As CNSL is effective over a wider range of dietary conditions for such modulation of rumen fermentation in comparison with monensin, this new additive candidate might be applied to ruminant animals for various production purposes and at various stages.

Estimation of Estrogenic Activity by E-screen Assay and Stepwise Analysis of Endocrine Disruptors in Pilot Sewage Treatment Plant (파일럿 규모의 하수 처리 공정별 E-screen Assay에 의한 에스트로겐 활성과 내분비계 장애물질의 농도 평가)

  • Lee, Ji-Ho;Park, Jong-Yol;Ra, Jin-Sung;Duong, Cuong N.;Lee, Byoung-Cheun;Kim, Sang-Don
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.697-703
    • /
    • 2006
  • Endocrine disruptors were measured with GC/MS in effluents discharged from sewage treatment processes in pilot scale for the purpose of water reuse. From that analysis, we compared the removal rate of them by treatment processes. Nonylphenol was mainly detected in effluents and high concentration from 0.36 to 0.94 ${\mu}g/L$. $17{\beta}$-estradiol(E2) and $17{\alpha}$-ethynylestradiol(EE2) were detected as below the limit of detection in effluent. Endocrine disruptors were removed effectively in the range from 50 to 100% by treatment process. EC50 value($9.0{\times}10^{-3}$ M) of $17{\beta}$-estradiol(E2) by dose response curve of E-screen assay has higher than that of bisphenol A($2.736{\times}10^{-5}M$) and p-octylphenol($9.760{\times}10^{-6}$ M). These results showed that alkylphenols have lower relative estrogen potency than other estrogens such as $17{\beta}$-estradiol(E2). Calculated estrogenic activity(ng-EEQ/L) was 2 times higher than measured total estrogenic activity which estimated by E-screen assay. Moreover estrogenic activity of effluent by treatment process showed very low as below 1 ng-EEQ/L.