• Title/Summary/Keyword: Alkanol Amine

Search Result 4, Processing Time 0.021 seconds

The Operational Characteristics of CO2 5 ton/day Absorptive Separation Pilot Plant (이산화탄소 5 ton/day 흡수분리 Pilot Plant 운전 특성)

  • O, Min-Gyu;Park, So-Jin;Han, Keun-Hee;Lee, Jong-Seop;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.128-134
    • /
    • 2012
  • The pilot scale experiments can handle the flue gas up to 1,000 $Nm^3/hr$ for separation of carbon dioxide included in real flue gas at coal-fired power plant. The operational characteristics was analyzed with the main experimental variables such as flue gas flow rate, absorbent circulation rate using chemical absorbents mono-ethanolamine( MEA) and 2-amino-2-methyl-1-propanol(AMP). The more flue gas flow rate decreased in 100 $m^3/hr$ in the MEA 20 wt% experiments, the more carbon dioxide removal efficiency was increased 6.7% on average. Carbon dioxide removal efficiency was increased approximately 2.8% according to raise of the 1,000 kg/hr absorbent circulation rate. It also was more than 90% at $110^{\circ}C$ of re-boiler temperature. Carbon dioxide removal efficiency of the MEA was higher than that of the AMP. In the MEA(20 wt%) experiment, carbon dioxide removal efficiency(85.5%) was 10% higher than result(75.5%) of ASPEN plus simulation.

Degradation Characteristics of Aqueous MEA Solution by Corrosion Products and Absorption Conditions (흡수 조건 및 부식 생성물에 의한 MEA 수용액의 변성 특성)

  • NAM, SUNGCHAN;SONG, YOONAH;BAEK, ILHYUN;YOON, YEOIL;YOU, JEONGKYUN;LEE, CHANGHA
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.290-297
    • /
    • 2016
  • The absorbent loss due to degradation in $CO_2$ capture process using aqueous alkanol amine solution has adverse effect on the economics of overall process. The degradation causes absorbent loss, equipment corrosion, foaming, adhesive material producing and viscosity increase in operation. In this study, the degradation characteristics of $CO_2$ capture process using MEA (monoehtanolamine) under various conditions such as $O_2$ partial pressure, $CO_2$ loading and absorbent temperature. The effects of iron, which generated from the equipment corrosion, on absorbent degradation were studied using $Fe_2SO_4$ containing MEA solution. The produced gases were analyzed by FT-IR(Fourier Transform Infrared Spectrophotometer) and the specifically measured $NH_3$ concentration was used as a degradation degree of aqueous MEA solution. The experiments showed that the higher $CO_2$ loadings (${\alpha}$), $O_2$ fraction ($y_{O2}$) and reaction temperature enhanced the more degradation of aqueous MEA solution. Comparing other operation parameters, the reaction temperature most affected on the degradation. Therefore, it could be concluded that the above parameters affects on degradation should be considered for the selections of $CO_2$ absorbent and operating conditions.

Preparations of Universal, Functionalized Long-Chain Alkylthiol Linkers for Self-assembled Monolayers (자기조립단분자막을 위한 보편적이고 기능화된 긴 사슬 알킬티올 연결자의 제조)

  • Yoo, Dong-Jin;Lee, Kyong-Sub;Kim, Ae-Rhan;Nahm, Kee-Suk
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.330-337
    • /
    • 2011
  • In this research, the preparation processes for making a series of $\omega$-mercapto alkylamine 1 and $\omega$-mercapto alkanoic acid 2 useful for studying of the self-assembled monolayer(SAM) are described. The preparation methods of the first goal materials, $\omega$-mercapto alkylamines 1 were carried out as follows: First, $\omega$-phthalimide alkanol 3 was synthesized from commercially available potassium phthalimide derivatives and $\omega$-bromoalkanol in DMF at $80{^{\circ}C}$ via substitution reaction. After refluxing $\omega$-phthalimide alkanol 3 with hydrazine hydrate in ethanol followed by treating with c-HCl, $\omega$-aminoalkanol 4 was obtained in 76-98% yield, accompanied with side-product 5. Bromination of hydroxyl moiety of $\omega$-aminoalkanol 4 using aqueous hydrobromic acid furnished $\omega$-bromoamine 6 in 34-97% yields. Substitution reaction 6 with thiourea in 95% ethanol gave $\omega$-aminoalkanthiuronium 7, which was treated with aqueous strong base and aqueous strong sulfuric acid gave desired products, $\omega$-mercapto alkylamines 1 through overall 5 steps. The second target material, $\omega$-mercapto alkanoic acid 2 was prepared via 2 steps. $\omega$-bromo alkanoic acid was reacted with thiourea to give $\omega$-thiourea alkanoic acid 7 in 69-85%, which was treated with aqueous strong base and strong acid to furnish $\omega$-mercapto alkanoic acid 2 in 50-98%. The fabricated long-chain alkylthiol(LCAT) can be used as linkers to immobilize protein, enzyme and various kinds of biomolecules on the surface of metallic materials(Au, Pt, Ti) by SAM, and can be useful chemical tools for the application study on the surface modification of metallic materials.

A Study on the CO2 Removal Efficiency with Aqueous MEA and Blended Solutions in a Vortex Tube Type Absorber (Vortex Tube 형 흡수장치에서 MEA와 혼합흡수용액을 이용한 CO2 제거 효율 고찰)

  • Ryu, Woo-Jung;Han, Keun-Hee;Choi, Won-Kil;Lee, Jong-Sub;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.795-800
    • /
    • 2009
  • In this study, the $CO_2$ removal characteristics of the Vortex tube type absorbtion apparatus were investigated to enhance the compactness of $CO_2$ absorption process and to reduce the amount of absorbing solution of the $CO_2$ separation process. The Vortex tube with the diameter of 17 mm and the length of 250mm was introduced in the experimental apparatus to treat $20Nm^3/hr$ of $CO_2$ containing flue gas. The flue gases for experiments containing 11~13 vol% of $CO_2$ were supplied from the coal-firing CFBC power plant with 12 ton/hr of steam producing capacity. The mixed solutions of 20 wt% of MEA as base solution with the adding solutions like HMDA, AMP and KOH were used as absorbents. The experiments were executed under the various conditions like the absorbing solution concentrations in the range of 20 to 50 wt%, the flow rate of $CO_2$ containing flue gases in the range of 6 to $15Nm^3/hr$ and the flow rate of absorbing solution in the range of 1.0 to 3.0 l/min. As a results, the $CO_2$ removal efficiency of mixed absorbent of 20 wt% of MEA with HMDA was remarkable. From this study, we concluded that the efficient separation of $CO_2$ from flue gases using the features of the Vortex tube type absorbing unit for gas/liquid contact and the separation of gas/liquid be possible. But more works are needed to increase the $CO_2$ removal efficiency of Vortex tube process.