• Title/Summary/Keyword: Alkaline Wastewater

Search Result 97, Processing Time 0.025 seconds

A Study on the Field Application of Alkaline Tunnel Wastewater to Neutralization Using CO2 (터널시공 시 이산화탄소(CO2)를 이용한 알칼리성 폐수의 중화처리 현장적용 연구)

  • Park, Young-Jin;Lee, Ho-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.27-34
    • /
    • 2020
  • Strong alkaline waste water is generated in large quantities due to using Concrete, shotcrete and various compounds in tunnel construction sites. As the release of this alkaline waste water will contaminate the stream water, it has to be neutralized. Currently, this waste water is mainly neutralized by using sulfuric acid or hydrochloric acid, but the risks of corrosion and handling of facilities are inherent and the chemical control act requires strict management measures. Therefore, using CO2 (carbon dioxide) as an alternative has been highlighted and various indoor experiment studies have been conducted to prove its potential. However, it is difficult to apply CO2 to the site because it is still completely lacking in field application research and shows different characteristics from indoor experiments. In this study, the actual site applicability is verified through field testing.

Magnetic biochar from alkali-activated rice straw for removal of rhodamine B from aqueous solution

  • Ren, Zhaogang;Chen, Fang;Wang, Bin;Song, Zhongxian;Zhou, Ziyu;Ren, Dong
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.536-544
    • /
    • 2020
  • To address organic dye wastewater, economic and effective adsorbents are required. Here, magnetic biochar from alkali-activated rice straw (AMBC) was successfully synthesized using one-step magnetization and carbonization method. The alkaline activation caused the large specific surface area, high pore volume and abundant oxygen-containing groups of the AMBC, and the magnetization gave the AMBC a certain degree of electropositivity and fast equilibrium characteristics. These characteristics collectively contributed to a relative high adsorption capacity of 53.66 mg g-1 for this adsorbent towards rhodamine B (RhB). In brief, RhB can spontaneously adsorb onto the heterogeneous surface of the AMBC and reach the equilibrium in 60 min. Although the initial pH, ionic strength and other substances of the solution affected the adsorption performance of the AMBC, it could be easily regenerated and reused with considerable adsorption content. Based on the results, H-bonds, π-π stacking and electrostatic interactions were speculated as the primary mechanisms for RhB adsorption onto the AMBC, which was also demonstrated by the FTIR analysis. With the advantageous features of low cost, easy separation, considerable adsorption capacity and favorable stability and reusability, the AMBC would be a potential adsorbent for removing organic dyes from wastewater.

Application of Ferrate (VI) for Selective Removal of Cyanide from Plated Wastewater (도금폐수 중 시안(CN)의 선택적 제거를 위한 Ferrate (VI) 적용)

  • Yang, Seung-Hyun;Kim, Younghee
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.168-173
    • /
    • 2021
  • The treatment of plated wastewater is subject to various and complex processes depending on the pH, heavy metal, and cyanide content of the wastewater. Alkali chlorine treatment using NaOCl is commonly used for cyanide treatment. However, if ammonia and cyanide are present simultaneously, NaOCl is consumed excessively to treat ammonia. To solve this problem, this study investigated 1) the consumption of NaOCl according to ammonia concentration in the alkaline chlorine method and 2) whether ferrate (VI) could selectively treat the cyanide. Experiments using simulated wastewater showed that the higher the ammonia concentration, the lower the cyanide removal rate, and the linear increase in NaOCl consumption according to the ammonia concentration. Removal of cyanide using ferrate (VI) confirmed the removal of cyanide regardless of ammonia concentration. Moreover, the removal rate of ammonia was low, so it was confirmed that the ferrate (VI) selectively eliminated the cyanide. The cyanide removal efficiency of ferrate (VI) was higher with lower pH and showed more than 99% regardless of the ferrate (VI) injection amount. The actual application to plated wastewater showed a high removal ratio of over 99% when the input mole ratio of ferrate (VI) and cyanide was 1:1, consistent with the molarity of the stoichiometry reaction method, which selectively removes cyanide from actual wastewater containing ammonia and other pollutants like the result of simulated wastewater.

A basic study on the recovery of Ni, Cu, Fe, Zn ions from wastewater with the spent catalyst (폐산화철촉매에 의한 폐수중 Ni, Cu, Fe, Zn이온 회수에 관한 기초연구)

  • Lee Hyo Sook;Oh Yeung Soon;Lee Woo Chul
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.3-8
    • /
    • 2004
  • A basic study on the recovery of heavy metals such as Zn, Ni, Cu and Fe ions from wastewater was carried out with the spent iron oxide catalyst, which was used in the Styrene Monomer(SM) production company. The heavy metals could be recovered more than 98% with the spent iron oxide catalyst. The alkaline components of the spent catalyst could be precipitated the metal ions of the wastewater as metal hydroxides at the higher pH 10.6 in Ni, pH 8.0 in Cu, pH 6.5 in Fe, pH 8.5 in Zn. But the metal ions are adsorbed physically on the surface of the spent catalyst in the range of the pH of the metal hydroxides and pH 3.0, which is the isoelectric point of the iron oxide catalyst.

A Study on the Washability and Washing Conditions of the Industrial Alkaline Laundry Detergent Suitable for Water Discharge Standards and Detergent Regulations (수질 배출기준 및 세제 안전기준에 적합한 산업용 알칼리 세탁세제의 세척성과 세탁조건 연구)

  • Song, Hyunjoo;Song, Sunhye
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.250-257
    • /
    • 2021
  • Laundry industry has traditionally been considered an industry that generates large amounts of wastewater and Volatile Organic Compounds(VOCs). This is still the case until now. Household laundry detergents are produced and distributed within the safety regulations on the amount of harmful substances detected. While industrial laundry detergents are often distributed without safety regulations, and even laundry workers manufacture and use them on their own. This contaminates water and air and also threatens the safety of workers. This study is a basic study for distributing eco-friendly detergents(EFD-A) developed through previous studies to the laundry industry. Safety, washability and wastewater quality of EFD-A are evaluated. Three existing commercial detergents(PD1, PD2, LD4) are also evaluated to compare with EFD-A. The safety of detergents is confirmed by the content of optical brightener, VOCs, and arsenic. Washability is evaluated by the difference in reflectance of washed and unwashed artificial soiled fabrics according to detergent concentration, washing temperature, and washing time. TOC is used as the index of assessing the wastewater quality. The results are as follows; EFD-A doesn't contain the optical brighteners, VOCs, and arsenic. The optimal washing conditions for EFD-A are 3 g/L concentration, 40 ℃ washing temperature, and 30 min washing time. The soil removal efficiency is about 71 %, which was similar to or somewhat superior to that of PD1, PD2, and LD4. TOC is 63.5 %, which is about 15 % lower than the discharge limit. Through this study, the developed detergent EFD-A can be used as a safe and eco-friendly detergent for the human body and the environment.

Chemical Treatment of Municipal Wastewater Using Alum Sludge

  • Shin, Dae-Yewn;Moon, Ok-Ran;Yoon, Mi-Ran;Ro, Chang-Wha;Kang, Gong-Unn;Moon, Deok-Hyn;Dermatas, Dimitris
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.12a
    • /
    • pp.51-53
    • /
    • 2005
  • Disposal of waterwork sludge is important problem in WTP(water treatment plant). Purpose of this study is treated municipal waste water chemically using sludge that is produced in waterwork plant by link to reutilize waterwork sludge. Municipal waste water that use in an experiment used is produced at C university, and is SS 220 mg/L, BOD 145 mg/L, COD 160 mg/L, T-N 52 mg/L and T-P 2.6 mg/L. Used Alum, polymer coagulant and coagulant aid (diatomite, powered activated carbon) as CaO, coagulant as alkaline aid by chemical treatment medicine. In case of does slow speed agitation and stations after pours waterwork sludge in sewage and alkaline aid and coagulant at rapidly mixing the colloidal creation speed is fast and fine colloids concentration was high but settling time is shortened a little and removal rate of pollutant improved by $60{\sim}99%$.

  • PDF

2,4-Dichlorophenol Enzymatic Removal and Its Kinetic Study Using Horseradish Peroxidase Crosslinked to Nano Spray-Dried Poly(Lactic-Co-Glycolic Acid) Fine Particles

  • Dahili, Laura Amina;Nagy, Endre;Feczko, Tivadar
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.768-774
    • /
    • 2017
  • Horseradish peroxidase (HRP) catalyzes the oxidation of aromatic compounds by hydrogen peroxide via insoluble polymer formation, which can be precipitated from the wastewater. For HRP immobilization, poly(lactic-co-glycolic acid) (PLGA) fine carrier supports were produced by using the Nano Spray Dryer B-90. Immobilized HRP was used to remove the persistent 2,4-dichlorophenol from model wastewater. Both extracted (9-16 U/g) and purified HRP (11-25 U/g) retained their activity to a high extent after crosslinking to the PLGA particles. The immobilized enzyme activity was substantially higher in both the acidic and the alkaline pH regions compared with the free enzyme. Optimally, 98% of the 2,4-dichlorophenol could be eliminated using immobilized HRP due to catalytic removal and partly to adsorption on the carrier supports. Immobilized enzyme kinetics for 2,4-dichlorophenol elimination was studied for the first time, and it could be concluded that competitive product inhibition took place.

Anaerobic Digestion of Distillery Wastewater in a Two-phase UASB System (이상 UASB 공정을 이용한 주정폐수의 혐기성소화)

  • Shin, Hang Sik;Bae, Byung Uk;Paik, Byung Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.185-192
    • /
    • 1990
  • A two-phase UASB system was operated for high-rate treatment of concentrated distillery wastewater. The phase separation was obtained by adjusting pH in each reactor. When influent SS concentration was 4.1/g/l, the first phase UASB reactor was effectively operated up to the loading rate of 16.5kg $COD/m^3.day$, producing 3.9g HAc/l.day. In the methanogenic UASB reactor, loading rate up to 44kg $COD/m^3.day$ could be applied while removing 80% of influent COD with a specific gas production of 16.5 l/l. day. After the formation granular sludge in both reactors, it was possible to maintain the appropriate pH in the first phase only by recirculating the effluent from methanogenic phase without the addition of alkaline chemicals.

  • PDF

Effect of Phase Separation on Anaerobic Degradation of Phenol (페놀의 혐기성분해에 대한 상분리의 영향)

  • Park, Ju-Seok;Shin, Hang-Sik;Bae, Byung-Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.1
    • /
    • pp.27-33
    • /
    • 1994
  • With the rapid industrialization, an ever-increasing quantity and kind of new organic compounds pose environmental problems due to their toxicity and physiological effect. However, research on the biodegradation of these compounds under anaerobic condition is very limited inspite of its efficiency and economical advantage. In this research, the pH effect on the ring cleavage of phenol under anaerobic condition was investigated, and the theory of phase separation was applied to the degradation of phenol for investigating the role of acidogenic bacteria. Results, obtained from biochemical methane potential(BMP) assay for 15.5 days of incubation, showed that acidic condition was more desirable for phenol degradation than alkaline condition. By both unacclimated methanogenic granular sludge and two mixed cultures, phenol was completely removed within six weeks of incubation with a gas conversion rate of over 86% of theoretical one. However, phenol was not degraded by unacclimated acidogenic culture, and thus it is considered as a syntrophic substrate. In case of phase separated biochemical methane potential(PSBMP) assay, in which acidogenic and methanogenic culture were seeded separately and consecutively, those that had been subjected to normal acidogens for 3 to 4 weeks showed higher gas production than those seeded with sterile or frozen culture.

  • PDF

Performances of a Sludge Reduction Process Using High Concentration Membrane Bioreactor with Sludge Pretreatment (슬러지 전처리와 고농도 MBR을 이용한 슬러지 감량화 공정연구)

  • Han, Kyu-Chul;Yeom, Ik-Tae;Jung, Woo-Jin;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.559-566
    • /
    • 2003
  • From this research, the performances of a sludge reduction in the sewage sludge aerobic digestion was experimented by using a sludge pretreatment and membrane bioreactor. The submerged plate membrane was used as the solid-liquid separation membrane. After drawing small amounts of sludge in a bioreactor and then doing the alkaline treatment and ozone treatment, the sludge was sent to back to the reactor. The HRT in the reactor was set as 5 days and the operation in the reactor was carried out at the DO of 1mg/L on average. After 100 days of operation in the reactor, it was shown that the reduction efficiency of total solids was more than 83%. Most of volatile solids were removed through mineralization, and the considerable portion of the non-volatile solids was dissolved and then flowed out with the effluent. Only about 16.3% of total solids in the sludge was accmulated in the reactor even without the loss of volatile fraction. Also, by deriving nitrification and denitrification in one reactor simultaneously, more than 90% of nitrogen removal effect was realized and the experiment was run smoothly without fouling of membrane, even in the high concentration of MLSS. Based on this experiment, sludge can be reduced considerably at a low HRT by these two newly suggested approach.