• Title/Summary/Keyword: Alkali-ion

Search Result 279, Processing Time 0.03 seconds

Carbonation and Cl Penetration Resistance of Alkali Silicate Impregnant of Concrete (Silicate계 콘크리트 침투성 함침제의 탄산화 및 염해 저항성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.719-724
    • /
    • 2008
  • Every concrete structure should continue to perform its intended functions such as to maintain the required strength and durability during its lifetime. Deterioration of the concrete structure, however, occurs more progressively from the outside of the concrete exposed to severe conditions. Main deteriorations in concrete structures result from carbonation, chloride ion attack and frost attack. Concrete can therefore be more durable by applying surface protection to increase its durability using impregnants, which are normally classified into two large groups in polymeric and silicate materials. Concrete impregnants are composed of silanes and alkali silicates (sodium, potassium and lithium silicate). Thus, this study is concerned with elevating the carbonation and Cl- penetration resistance of concrete structures by applying alkali silicate hydrophilic impregnants including lithium and potassium silicates. From the experimental test results, lithium and potassium silicates produced a good improvement in carbonation resistance and are expected to be used as hydrophilic impregnants of concrete structures.

Removal of Alkali Metal Ion using Inorganic Ion Exchanger (무기이온교환제를 이용한 알카리 금속이온 제거)

  • Ha, Ji-Won;Yi, Kwang Bok;Lee, Si Hyun;Rhee, Young-Woo;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.423-429
    • /
    • 2008
  • Currently, Ash-free clean coal producing process by solvent extraction is under development. The produced ash-free clean coal can be directly combusted in a gas turbine which results in substantial improvement of power generation efficiency. However, the clean coal produced by the solvent extraction still contain trace amount of alkali metal which may cause corrosion on turbine blades during the direct combustion. In present work ${\alpha},{\beta}$-metal (Zr and Ti) phosphates and H-Y zeolite were synthesized and their ion exchange characterizations were investigated for the application on alkali metal removal for clean coal production. $Na^+$ ion removal capacities of the metal phosphates and H-Y zeolite were measured and compared in both aqueous solution (100 ppmw, $Na^+$) and coal dissolved N-methyl-2-pyrrolidone (NMP, 12 ppmw $Na^+$) at elevated temperature. In aqueous solution, the ${\beta}$ form metal phosphates showed very high ion exchange capacities compared to ${\alpha}$ form. ${\beta}$ form metal phosphates also showed higher $Na^+$ removal capacities than H-Y zeolite. In ion exchange medium of NMP, all the ${\alpha}$ form metal phosphates showed over 90% of $Na^+$ ion removal efficiency in the temperature range of 200 to 400 while that of H-Y zeolite decreased as a half when the temperature was over 350. In addition, the regenerated metal phosphates by acid treatment showed no sign of degradation in $Na^+$ removal efficiency. Among the metal phosphates used, $Zr_{0.75}Ti_{0.25}(HPO_4)_2$ showed the best performance in $Na^+$ removal and is expected to be the most suitable inorganic ion exchanger for the alkali metal removal process.

Development of Pore Filled Anion Exchange Membrane Using UV Polymerization Method for Anion Exchange Membrane Fuel Cell Application (음이온교환막 연료전지 응용을 위한 UV 중합법을 이용한 세공 충진 음이온교환막 개발)

  • Ga Jin Kwak;Do Hyeong Kim;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.2
    • /
    • pp.77-86
    • /
    • 2023
  • In this study, pore-filled ion exchange membranes with low membrane resistance and high hydroxide ion conductivity was developed. To improve alkali durability, a porous substrate made of polytetrafluoroethylene was used, and a copolymer was prepared using monomers 2-(dimethyl amino) ethyl methacrylate (DMAEMA) and vinyl benzyl chloride (VBC) for pores. divinyl benzene (DVB) was used as the cross-linker, and ion exchange membranes were prepared for each cross-linking agent content to study the effect of the cross-linker content on DMAEMA-DVB and VBC-DMAEMA-DVB copolymers. As a result, chemical stability is improved by using a PTFE material substrate, and productivity can be increased by enabling fast photo polymerization at a low temperature by using a low-pressure UV lamp. To confirm the physical and chemical stability of the ion exchange membrane required for an anion exchange membrane fuel cell, tensile strength, and alkali resistance tests were conducted. As a result, as the cross-linking degree increased, the tensile strength increased by approximately 40 MPa, and finally, through the silver conductivity and alkali resistance tests, it was confirmed that the alkaline stability increased as the cross-linking agent increased.

Treatment of Nitrogen Oxides in Ambient Air using a Ion-Selective Electrode (대기중 질산화물의 이온 선택성 전극에 의한 처리)

  • 안형환;우인성;강안수;이영순;김윤선
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.2
    • /
    • pp.40-49
    • /
    • 1990
  • For the determination of polluant NOx in ambient air, nitrate ion-selective electrode(ISE) was made. To comparison of NOx in each method, the nitrate-ISE, NEBA, Orion electrode were used to determinee NOx in ambient air. In this work, the concentration of NOx in ambient air was average 0.06ppm. The results were good agreement with those obtained by each method within a relative error of 3%, Absorbing efficiency of nitrogen oxides in ambient air was good for Alkali solution. The determination of nitrogen oxides in ambient air using the Aliquat 336N-PVC membrane electrode was one of the useful method. The best characteristics of the Aliquat 336N-PVC me,mbrane electrode were obtained with the ion-exchanger concentration level of 6.5-9.1 percent by weight. The optimal membrane composition, was 9.09wt.% of ion-exchanger, 30.95wt.% of PVC, 60.6wt.% of plasticizer (DBP), and 0.5mm of thickness. Under the above condition, the electrode approached the Nernstian slope most closely, and the linear response ranges produced the best results.

  • PDF

Sr2+ Ion Selective p-tert-Butylthiacalix[4]arene Bearing Two Distal Amide Units

  • Kim, Tae-Hyun;Kim, Ha-Suck;Lee, Joung-Hae;Kim, Jong-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.620-622
    • /
    • 2008
  • A new thiacalix[4]arene diamide (TCAm) has been prepared and its electrochemical property and complexation behavior toward various metal ions have been investigated by voltammetry. p-tert-Butylthiacalix[4]arene diamide (TCAm) exhibited selectivity toward Sr2+ ion over alkali, alkaline earth and transition metal ions while conventional calix[4]arene diamides showed selective binding property with Ca2+ ion. This is probably due to the bigger size of thiacalix[4]arene than those of calix[4]arene.

Ion-Exchange Separation of Thorium in Monazite (이온交換樹指에 依한 토리움分離)

  • Choi, Han-Suk;Ha, Young-Gu
    • Journal of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.56-59
    • /
    • 1961
  • Ion exchange procedure was studied for the separation of thorium from the acidic solution obtained by means of decomposition of monazite with alkali solution. Present cation exchange method consists of adsorption of cations from the sample solution (ca. 0.6N HCl acidic) onto Amberlite IR-120 resin, elution of all of the rare earth cations with 700 ml. of 2N Hydrochloric acid, and recovery of the thorium by elution with 200ml. of 6N sulfaric acid. Thorium recovery by the ion-exchange method mentioned above, was quantitative, and it is concluded that this ion-exchange method may be used not only for industrial separation of thorium from rare earths but also for quantitative determination of thorium with relative error, ${\pm}1.0.$.

  • PDF

UO22+ Ion-Selective Membrane Electrode Based on a Naphthol-Derivative Schiff's Base 2,2'-[1,2-Ethandiyl bis(nitriloethylidene)]bis(1-naphthalene)

  • Shamsipur, Mojtaba;Saeidi, Mahboubeh;Yari, Abdullah;Yaganeh-Faal, Ali;Mashhadizadeh, Mohammad Hossein;Azimi, Gholamhasan;Naeimi, Hossein;Sharghi, Hashem
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.629-633
    • /
    • 2004
  • A new PVC membrane electrode for $UO_2^{2+}$ ion based on 2,2'-[1,2-ethanediyl bis (nitriloethylidene)]bis(1-naphthalene) as a suitable ionophore was prepared. The electrode exhibites a Nernstian response for $UO_2^{2+}$ ion over a wide concentration range ($1.0{\times}10^{-1}-1.0{\times}10^{-7}$M) with a slope of 28.5 ${\pm}$ 0.8 mV/decade. The limit of detection is $7.0{\times}10^{-8}$M. The electrode has a response time of < 20 s and a useful working pH range of 3-4. The proposed membrane sensor shows good discriminating abilities towards $UO_2^{2+}$ ion with regard to several alkali, alkaline earth transition and heavy metal ions. It was successfully used to the recovery of uranyl ion from, tap water and, as an indicator electrode, in potentiometric titration of $UO_2^{2+}$ ion with Piroxycam.

Ammonium Ion Binding Property of Naphtho-Crown Ethers Containing Thiazole as Sub-Cyclic Unit

  • Kim, Hong-Seok;Do, Kyung-Soon;Kim, Ki-Soo;Shim, Jun-Ho;Cha, Geun-Sig;Nam, Hak-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1465-1470
    • /
    • 2004
  • A short and efficient synthesis, solvent extraction and potentiometric measurements of new thiazole-containing naphtho-crown ethers are reported. The naphthalene moiety enhances the ammonium ion selectivity over potassium ion. The selectivity of ${NH_4}^+/K^+$ follows the trend $3\;{\approx}\;2\;>\;1$, indicating that the differences in conformational changes of 2 and 3 in forming ammonium complexes affect little on the resulting ammonium/potassium extraction selectivity ratio. The ammonium ion-selective electrodes were prepared with noctylphenyl ether plasticized poly(vinyl chloride) membranes containing 1-4 the effect of one naphthalene unit introduced on either right (2) or left (3) side of thiazolo-crown ether on their potentiometric properties (e.g., ammonium ion selectivity over other cations, response slopes, and detection limits) were not apparent. However, the ammonium ion selectivity of 1, 2 and 3 over other alkali metal and alkaline earth metal cations is 10-100 times higher than that of nonactin.

Theoretical Studies on MXO4 (M=Li, Na, K and X=F, Cl, Br, I) Salt Ion Pairs

  • Rashid, Mohammad Harun Or;Ghosh, Manik Kumer;Choi, Cheol-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2215-2218
    • /
    • 2010
  • The series of alkali metal perhalogenates, $MXO_4$ (M=Li, Na, K and X=F, Cl, Br, I) were theoretically studied with the help of MP2 methods. Bidentate as well as tridentate structures were found to be stable minima. The bidentate structures are becoming preferred as the size of halogen increases and as the size of metal decreases. Geometrically, the M-O and M-X distances of both bidentate and tridentate structures, increase with the size of metal. Generally, the M-$O_1$ distances of tridentate forms are longer than the corresponding distances of bidentate forms, while the M-X distances of tridentate forms show the opposite trend. Similarly, the X-O bonds increase with the size of halogens except $MXO_4$ pairs, where the X-O bonds are unusually long due to the enhanced oxygen-oxygen repulsions. In short, the relative energetics as well as the geometrical parameters are found to be strongly dependent on halogen and metal elements.

Ion Exchange Capacity and Phase Separation of Alkali Borosilicate Glass by Substituting $Al_2O_3$ (산화알루미늄의 치환에 따른 붕규산 유리의 분상 미 이온교환성에 관한 연구)

  • 김병호;유영문
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.1
    • /
    • pp.41-50
    • /
    • 1984
  • The ion-exchange porous glasses were prepared by heat treating and subsequently acid treating the (95-y) $SiO_2$.$yB_2O_3$.$5Na_2O+xAl_2O_3$ glasses with y=55, 45, 35, 25. mole% and x=0, 2, 5, 9 mole% It was then investigated how the cation exchange capacity was affected by the phase separation in these glasses. For that matter such quantities as alkali extraction amount pore volume and specific surface area of the glasses were measured. The phase separation in these glasses was in general suppressed by the addition of $Al_2O_3$ maximally around the composition of 5 mole% $Al_2O_3$ This may be because the micro-phase separation prevailed in the glass of that composition over the macro-phase separation increasing thereby the specific surface area as well as the residual amount Al of after acid-treatment and accordingly the cation exchange capacity. The maximum values of the cation exchange capacity was observed to be about 150meq/100g for the glasses of (40-50) $SiO_2$ (55~45)$yB_2O_3$. $5Na_2O+5Al_2O_3$.

  • PDF