• Title/Summary/Keyword: Alkali sulfate

Search Result 102, Processing Time 0.022 seconds

Effect of Aluminum Potassium Sulfate Addition on the Color Change in Caesalpinia Sappan Dyeing by Rice Straw Ash Solution (볏짚 잿물 매염에 의한 소목 염색에서 명반 첨가가 색상변화에 미치는 영향)

  • Seo Hee-Sung;Jeon Dong-Won;Kim Jeon-Jun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.11
    • /
    • pp.1465-1474
    • /
    • 2005
  • The primary purpose of this study is to investigate the differences in the characteristics of the mordants, synthetic aluminum mordants and ash solutions as natural mordants, used in Caesalpinia sappan dyeing. By introducing aluminum potassium sulfate in the ash solutions, the behavior of the aluminum in the ash solutions were observed. In the rice straw ash solutions, adjusted to the levels of pH6 and pH10, the aluminum potassium sulfate was introduced to achieve various concentration levels. From the analysis of the ash solution of pull, $K^+$ and $Na^+$ ion concentrations were found to be extremely high, while $Al^+$ ion concentration was 0. The color development in the Caesalpinia sappan dyeing by ash solution mordanting was found to be mainly governed not by the mordanting actions of the metallic ions but by those of alkali components. In the case of cotton, the application of pH10 ash solution promoted reddish color development compared to the case of non-mordanting, regardless of the aluminum potassium sulfate addition. In the case of silk, the application of pH10 ash solution increased a* value and decreased b* value compared to the case of non-mordanting.

A Study on Wool Fabric Treated with Anionic Surfactant and Alkali (음이온계 계면활성제 존재하에서 양모직물의 알칼리 처리에 관한 연구)

  • Lee Jung Boon;Ryu Hyo Seon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.11 no.2 s.24
    • /
    • pp.101-112
    • /
    • 1987
  • The purpose of this study is to investigate the influence of addition of sodium dodecyl sulfate(SDS) when wool is treated with sodium hydroxide(NaOH). Physical and chemical changes were examined on wool treated with various cone. of NaOH and SDS simultaneously. The result are as follows. 1. The higher the temperature and the longer the time of NaOH treatment are, the more alkali damage wool get : increase in weight loss and decrease in urea-bisalphite solubility and in tensile strength. But the treatment time reacts less effective than the temperature. 2. When wool is treated with NaOH, at NaOH cone. under $10^{-3}M$., the addition of SDS alleviates the alkali reaction on wool: increase in cystine contents and in urea-bisulpite solubility, and decrease in degree of swelling. On the other hand, at NaOH cone. over $10^{-2}M$., the addition of SDS promotes the alkali reaction on the wool. 3. When wool is treated with NaOH, the addition of SDS shows no changes on the tensile strength. On the other hand, at NaOH cone. under $10^{-2}M$., the addition of SDS shows no changes on the softness of wool, but at the $10^{-1}M$. NaOH cone. addition of SDS increases the soft-ness of wool. The area shrinkage of wool treated with NaOH and SDS shows less changes than with NaOH only.

  • PDF

문경지역 탄산온천수의 지구화학적 및 동위원소적 특성연구

  • 배대석;최현수;고용권;박맹언;정율필
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.87-90
    • /
    • 2000
  • The hydrogeochemical and isotopic studies on deep groundwater in the Munkyeong area, Kyeongbuk province were carried out. $CO_2$-rich groundwater (Ca-HC $O_3$ type) is characterized by low pH (5.8~6.5) and high TDS (up to 2,682 mg/L), while alkali groundwater (Na-HC $O_3$ type) shows a high pH (9.I~10.4) and relatively low TBS (72~116 mg/L). $CO_2$-rich water may have evolved by $CO_2$ added at depth during groundwater circulation. This process leads to the dissolution of surrounding rocks and Ca, Na, Mg, K and HC $O_3$ concentrations are enriched. The low Pc $o_2$ (10$^{-6.4}$atm) of alkali groundwaters seems to result from the dissolution of silicate minerals without a supply of $CO_2$. The $\delta$$^{18}$ O and $\delta$D values and tritium data indicate that two types of deep groundwater were both derived from pre-thermonuclear meteoric water. The carbon Isotope data show that dissolved carbon in the $CO_2$-rich water was possibly derived from deep-seated $CO_2$ gas. The $\delta$$^{18}$ S values of dissolved sulfate show that sulfate reduction occurred at great depths. The application of various chemical geothermometers on $CO_2$-rich groundwater shows that the calculated deep reservoir temperature is about 130~175$^{\circ}C$. Based on the geological setting, water chemistry and environmental isotope data, each of the two types of deep groundwater represent distinct hydrologic and hydrogeochemical evolution at depth and their movement is controlled by the local fracture system.m.

  • PDF

The Strength Properties Activated Granulated Ground Blast Furnace Slag with Aluminum Potassium Sulfate and Sodium Hydroxide (칼륨명반과 수산화나트륨으로 활성화된 고로슬래그 미분말의 강도 특성)

  • Kim, Taw-Wan;Hahm, Hyung-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.95-102
    • /
    • 2015
  • In this paper, the effects of sodium hydroxide (NaOH) and aluminum potassium sulfate ($AlK(SO_4)_2{\cdot}12H_2O$) dosage on strength properties were investigated. For evaluating the property related to the dosage of alkali activator, sodium hydroxide (NaOH) of 4% (N1 series) and 8% (N2 series) was added to 1~5% (K1~K5) dosage of aluminum potassium sulfate ($AlK(SO_4)_2{\cdot}12H_2O$) and 1% (C1) and 2% (C2) dosage of calcium oxide (CaO). W/B ratio was 0.5 and binder/ fine aggregate ratio was 0.5, respectively. Test result clearly showed that the compressive strength development of alkali-activated slag cement (AASC) mortars were significantly dependent on the dosage of NaOH and $AlK(SO_4)_2{\cdot}12H_2O$. The result of XRD analysis indicated that the main hydration product of $NaOH+AlK (SO_4)_2{\cdot}12H_2O$ activated slag was ettringite and CSH. But at early ages, ettringite and sulfate coated the surface of unhydrated slag grains and inhibited the hydration reaction of slag in high dosage of $NaOH+AlK(SO_4)_2{\cdot}12H_2O$. The $SO_4{^{-2}}$ ions from $AlK(SO_4)_2{\cdot}12H_2O$ reacts with CaO in blast furnace slag or added CaO to form gypsum ($CaSO_4{\cdot}2H_2O$), which reacts with CaO and $Al_2O_3$ to from ettringite in $NaOH+AlK(SO_4)_2{\cdot}12H_2O$ activated slag cement system. Therefore, blast furnace slag can be activated by $NaOH+AlK(SO_4)_2{\cdot}12H_2O$.

Synthesis and Crystal Structures of Alkali Lithium Molybdates and Alkali Lithium Tungstates (알칼리 리치움 몰리브덴산염과 알칼리 리치움 텅그스텐산염의 합성과 결정구조)

  • 정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.3
    • /
    • pp.72-76
    • /
    • 1985
  • Single crystals of the compound MeI $(LiMoO_4)$ and $Me^I(LiWO_4)$ ($Me^I=K$, Rb, Cs) were synthesized by slow evaporation from aqueous solution and bycooling from melt. The compounds of potassium or rubidium are hygroscopic and they form easily hydrated crystals $Me^I LiMoO_4$.$H_2O$ or $Me^ILiMoO_4$.$H_2O$ or $Me^ILiWO_4$.$H_2O$ from aqueous solution. The structures of these hydrated crystals are each other isotypic and they are built up of distorted layers of $(LiMoO_5)$ or $(LiWO_5)$. There exist two types of tetrahedral framework structures in this group of anhydrous molybdates and tung-states ; tridymite-type and cristobalite-type. $KLiMoO_4$ and $KLiWO_4$ have two types of polymorphic structures where as only the cristobalite-type is found in the Rb-and Cs-compounds. The system $KLiSO_4-KLiMoO_4$ was studied. Two components are almost immiscible but there eixst a narrow area of solid solution on the side of sulfate in the system.

  • PDF

The Dispersion Stability of Multi-Walled Carbon Nanotubes in the Presence of Poly(styrene/$\alpha-methyl$ styrene/acrylic acid) Random Terpolymer

  • Chang, Woo-Hyuck;Cheong, In-Woo;Shim, Sang-Eun;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.545-551
    • /
    • 2006
  • Aqueous dispersions of pristine and functionalized (COOH- and $NH_2$-) multi-walled, carbon nanotubes (MWNTs) were prepared by using three types of surf act ants: sodium dodecyl sulfate (SDS, anionic), PEO-PPO-PEO (Pluronic P84, non-ionic), and poly(styrene/$\alpha-methyl$ styrene/acrylic acid) random terpolymer, i.e., alkali-soluble resin (ASR). The aggregate size, $\zeta-potential$, and storage stability of the MWNT aqueous dispersions were investigated by using dynamic light scattering and the turbidity method at room temperature. The exfoliation of the MWNT aggregates was determined by a UV-visible spectrophotometer and the morphology of the surfactant-coated MWNTs was observed by transmission electron microscopy (TEM). In all cases, ASR showed better dispersion stability with the smallest aggregate size, compared with the other surfactants, because of its unique molecular structure, i.e., randomly incorporated carboxylic acid groups and planar phenyl groups that can be irreversibly and effectively adsorbed on the MWNT surface. A predominantly-exfoliated morphology of MWNTs was observed in the presence of ASR from the strong intensity of the UV-vis spectrum at 263 nm.

Effects of Properties of Raw Materials on Biodiesel Production (바이오디젤 생산에 미치는 원료 특성의 영향)

  • Jeong, Gwi-Taek;Park, Seok-Hwan;Park, Jae-Hee;Park, Don-Hee
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.335-339
    • /
    • 2008
  • Biodiesel is an alternative and renewable energy source, which is hoped to reduce global dependence on petroleum and environmental problem. Biodiesel produced from a variety of oil sources such as vegetable oil, animal fat and waste oils, and has properties similar to those associated with petro-diesel, including cetane number, volumetric heating value, flash point, viscosity and so on. In this study, we investigate the effect of quality of raw materials on alkali-catalyzed transesterification for producing of biodiesel. The increase of content of free fatty acid and water in oil were caused the sharp decrease of conversion yield. Also, the low purity of methanol in reactant was inhibited the reaction rate. In the case of addition of sodium sulfate as absorbent to prepare catalyst solution, the content of fatty acid methyl ester in product was increased more about 1.6% than that of control. However, the addition of zeolite, sodium chloride and sodium sulfate as absorbent in reactant to remove water generated from reaction did not show any enhancement in the reaction yield. This result may provide useful information with regard to the choice and preparation of raw materials for more economic and efficient biodiesel production.

Enzymatic Properties of Serratia marcescens Pretense (Serratia marcescens Protease의 효소학적 특성)

  • 최병범
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.2
    • /
    • pp.152-157
    • /
    • 2003
  • Serratia marcescens ATCC 25419 protease was purified to homogeneity by ammonium sulfate treatment, and DEAE-cellulose anion exchange chromatography. The specific activity of the enzyme was increased 448-fold during purification with an overall yield of 43.0%. Metal reactivation on the purified protease from S. marcescens was studied. S. marcescens protease was a metalloenzyme to be completely inhibited its activity by EDTA and the enzyme outstandingly inhibited by Hg, Fe, Cu, but the activity was increased approximately 20% by Co. The reactivation of the apoenzyme was effective with Mn, Co, Zn in pH range from 6 to 8. Among metalloenzymes prepared to the addition of Mn, Co, Zn to restore the degree of activity of native enzyme, Zn-enzyme was similar to the native enzyme in respects with enzyme activity, alkali-inactivation, thermo-stability.

Strength and Durability Characteristics of Low-alkali Mortar for Artificial Reefs Produced by 3D Printers (인공어초 3D 프린터 출력을 위한 저알칼리 모르타르의 강도와 내구성능)

  • Lee, Byung-Jae;Kim, Bong-Kyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.67-72
    • /
    • 2022
  • Concrete prevents corrosion of reinforcing bars due to its strong alkalinity. However, in the sea, strong alkali components with a pH of 12 to 13 are eluted, which adversely affects the ecological environment and growth of marine organisms. In this study, the mechanical properties and durability of the low alkali mortar were evaluated for the development of a low alkali mortar for the 3D printed artificial reefs. As a result of evaluation of strength characteristics, the α-35 mixture, which were produced with fly ash, silica fume and α-hemihydrate gypsum, satisfied the strength requirement 27 MPa in terms of compressive strength. As a result of pH measurement, it was found that mixing with alpha-type hemihydrate gypsum resulted in minimizing pH due to the the formation of calcium sulfate instead of calcium hydroxide production. As a result of the chloride ion penetration resistance test, the α-35 mixture exhibited the best performance, 3844C. As a result of measuring the length change over time, the α-35 mixture showed the shrinkage 33.5% less compared to the Plain mix.

Pilot-scale preparation and physicochemical characteristics of microbiological agar from Gelidium amansii in Korea (국내산 우뭇가사리로부터 미생물 배지용 한천의 pilot규모 정제와 특성)

  • KIM Doo-Sang;KIM Hyeung-Rak;KIM Jeong-Han;PYEUN Jae-Hyeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.1
    • /
    • pp.70-74
    • /
    • 2000
  • Agar for microbiological medium was prepared with pilot-scale for industrial application by the process of microfiltration ($0.4 {\mu}m\;pore size$) in $40{\~}50{\circ}C$, washing with sot water, and treatment with $0.25\;N NaOH\;at\;70{\circ}C$. Transparency, gel strength, viscosity, sulfate content, and syneresis ratio of agar prepared from Gelidium amansii was compared with commercial agar for microbiological medium. Gel strength and transparency were increased with processing, however, it's viscosity, sulfate content, and syneresis ratio were reduced. The final agar product was superior to commercial agar for microbiological medium.

  • PDF