• Title/Summary/Keyword: Alkali granite

Search Result 113, Processing Time 0.027 seconds

Weathering and Deterioration Diagnosis for Conservation Sciences of Stone Pagoda in the Bunhwangsa Temple,Gyeongju, Korea (경주 분황사 모전석탁의 암석학적 풍화와 보존과학적 훼손도 진단)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Lee, Myeong-Seong;Kim, Young-Taek
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.92-100
    • /
    • 2004
  • The host rocks of brick-shaped stone pagoda in the Bunhwangsa temple are lots of kinds andesitic rocks, which has gone through mechanical and chemical weathering. As the overall observation, the pagoda is serious damages by air pollutants, and the northeast parts show the much advanced state of turning white, while the southeast parts are heavily cracked in the materials. The rocks of brick-shaped pagoda body are in a relatively stable condition of weathering and damage except for the abrasion and cracks of the corners. The rocks of the pagoda roof suffer from more symptoms including multiple peel-offs, exfoliation, cracks forming round lines, and falling off stone pieces. The pagoda roof rocks are dominated by the thriving leafy lichens and mosses, especially, there are higher plants (selaginella involvens, dandelions) taking root actively between the brick stones and content mortar. There are even light gray precipitates like stalactites between the rocks of the body, In particular, the 1st and 2nd floor in the east side and the body parts in the north side are the most serious. Their major minerals are calcite, gypsum and clay minerals. The rocks of the stylobate and the tabernacle in all the four directions are composed mainly of granitic rocks. The materials consisting of the tabernacles show the severe splits and distortion, which causes the structural instability. The stylobate rocks are heavily contaminated by some weeds with the often marks of inorganic contamination by secondary hydroxides. The central part of the east stylobate has been sinking, while that of the 1st floor west stylobate is protruded nesting a line of cracks. Accordingly, the inside of the tabernacle is always humid with the constant introduction of rainwater. The stone lion standing in the southeast and northeast side are alkali granite, while that in the southwest and northwest lithic tuff. Each of the stone lion also coated with various colored lichens, mosses, algae, bacteria and bryophyte. The external materials of the pagoda have deteriorated the functions of the rocks and made the loss, falling off, and biological contamination even worse due to the surface weathering. Thus it's urgent to come up with scientific restoration and conservation measures through clinical tests.

  • PDF

Behavior Interpretation of Discontinuity for Conservation Treatment of Standing Sculptured Buddha at the Yongamsa Temple, Korea (옥천 용암사 마애불의 보존관리를 위한 불연속면의 거동특성 해석)

  • Lee, Chan-Hee;Jeong, Yeon-Sam;Kim, Ji-Young;Yi, Jeong-Eun;Kim, Sun-Duk
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.81-91
    • /
    • 2004
  • The host rock of standing sculptured Buddha in the Yongamsa temple was macular biotite granite, which has gone through mechanical and chemical weathering. The principal rock-forming minerals are quartz, plagioclase, alkali feldspar, and biotite, the last two of which have been transformed into clay minerals and chlorite due to weathering processes. The bed rock around the Buddha statue is busily scattered with steep inclinations that are almost vertical and discontinuous planes with the strikes of $N8^{\circ}E$. The major joints have the strikes of N4 to $52^{\circ}W$ and N6 to $88^{\circ}E$ and the dips of 42 to $89^{\circ}$. Especially thee development of the joints that cross the major joints causes tile structural instability of the rock. The host rock of the Buddha image is separated into many different rock masses because of the also many different discontinuity, which group accounts for about $12{\%}$ of the rock. Thus it's estimated that the bed rock has not only plane and toppling failure but also wedge failure in all the sides. Since the earth pressure and the inclination pressure are imposed on the body of the Buddha in the basement rock, it's urgent to give a treatment of geotechnical engineering for the sake of its structural stability. The parts where serious fractures are seen should receive the hardening process using the fillers for stones. It's also necessary to introduce a landfill liner system in order to reduce the ground humidity. The rock surface of the Buddha statue are partly contaminated by lichens and bryophyte. The joints have turned into earth, which promotes the growth of weeds and plant roots. Thus biochemical treatments should also be considered to get rid of the vegetation along the discontinuous planes and prevent further biological damages.

  • PDF

Deterioration Assessment and Structural‐Reinforcement of Stone Lantern of the Four Guardian Kings in Beopjusa Temple, Boeun (보은 법주사 사천왕석등의 비파괴 훼손도 평가 및 구조보강)

  • Choie, Myoungju;Lee, Myeong Seong;Jun, Yu Gun;Lee, Mi Hye;Kim, Yuri;Ha, Jun Kyeong
    • Journal of Conservation Science
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2017
  • The stone lantern of the four guardian kings in the Beopjusa temple at Boeun was mainly made of biotite granodiorite consisting of porphyritic-textured potassium feldspar and included in ilmenite series. A base stone made of alkali granite was buried, after founded its place during an earlier restoration process. Cracking and break out are noticeable on this object. In addition, discoloration, salt crusting, and epiphytes were observed. The lantern was vulnerable in terms of physical and structural stability caused by cracking in the front and back of the light chamber and in the non-horizontal direction. According to the conservational condition of the stone lantern, structural reinforcement was carried out based on calculations, including those on the position, size, and anchor length of the titanium stiffener. Chemical and biological pollutants were washed off without damage to the surface of the stone material. Oxygenated iron pieces were replaced with titanium. Ethyl silicate was applied to the surface of the lantern for consolidation and smooth drainage.

Quantitative Deterioration Assessment and Microclimatic Analysis of the Gyeongju Seokbinggo (Ice-storing Stone Warehouse), Korea (경주석빙고의 정량적 훼손도 평가와 미기후환경 분석)

  • Kim, Ji-Young;Lee, Chan-Hee;Lee, Myeong-Seong
    • Journal of Conservation Science
    • /
    • v.25 no.1
    • /
    • pp.25-38
    • /
    • 2009
  • The Gyeongju Seokbinggo (Treasure No. 66) is an ice-storing stone warehouse, consisting mainly of alkaligranite which shows milky white color and medium-grained textures with drusy cavities. As results of deterioration assessment, the deterioration rates were determined as crack (12.5%), disjoining (6.7%), breaking-out (25.1%), exfoliation (20.9%), efflorescence (6.5%), brown discoloration (9.8%), darkgray discoloration (2.0%) and biological discoloration (36.5%). Comprehensive physical deterioration rate and discoloration rate were calculated as 43.7% and 68.7%, respectively, that indicates the Seokbinggo has been severely weathered. Indoor relative humidity was above 90% except in winter season. Indoor microclimate was hardly fluctuating although indoor microclimate was dependent on the outdoor climate. The main cause of deterioration was high relative humidity and a long time of wetness due to penetration of rain, underground water and condensation. It was identified that the water brought out biological discoloration, dissolution of minerals, structural movement and efflorescence, and the dust from the ground soil in front of the entrance accelerated brown and dark gray discoloration on the stone surface.

  • PDF

Rubidium Market Trends, Recovery Technologies, and the Relevant Future Countermeasures (루비듐 시장 및 회수 동향에 따른 향후 관련 대응방안)

  • Sang-hun Lee
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.3-8
    • /
    • 2023
  • This study discussed production, demand, and future prospects of rubidium, which is an alkali group metal that is highly reactive to various media and requires carefulness in handling, but no significant environmental hazard of rubidium has been reported yet. Rubidium is used in various fields such as optoelectronic equipment, biomedical, and chemical industries. Because of difficulty in production as well as limited demand, the transaction price of rubidium is relatively high, but its detail information such as market status and potential growth is uncertain. However, if the mass production of versatile ultra-high-performance equipment such as quantum computers and the necessity of rubidium use in the equipment are confirmed, there is a possibility that the rubidium market will expand in the future. Rubidium is often found together with lithium, beryllium, and cesium, and may be present in granite containing minerals such as lepidolite and pollucite, as well as in seawater and industrial waste. Several technologies such as acid leaching, roasting, solvent extraction, and adsorption are used to recover rubidium. The maximum recovery efficiency of the rubidium from the sources and the processing above is generally high, but, in many practices, rubidium is not the main recovery target, and therefore the actual recovery effects should depend on presence of other valuable components or impurities, together with recovery costs, energy consumption, environmental issues, etc. In conclusion, although the current production and consumption of rubidium are limited, with consideration of the possible market fluctuations according to the emergence of large-scale demand sources, etc., further investigations by related institutions should be necessary.

Petrology of the Syenites in Sancheong, Korea (경남 산청 지역의 섬장암에 관한 암석학적 연구)

  • Ok, Eun-Young;Kim, Jong-Sun;Lee, Sang-Won;Kang, Hee-Cheol
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.25-54
    • /
    • 2015
  • Syenite is not a common rock, unlike granitic rocks formed the major component of the continental crust. The aim of this study is to decipher the occurrences and detailed descriptive characteristics of the syenite distributed in Sancheong area, and to investigate the petrogenesis of the syenitic magma based on geochemical study. The dominant minerals in syenite are alkali feldspar (usually orthoclase and rarely microcline), plagioclase, amphibole, biotite, and quartz. Syenites are found in a wide variety of colors. The anhedral hornblende and biotite filling the boundary of feldspar and quartz indicate that the hydrous minerals were crystallized lately, and that water was insufficient at the beginning of crystallization in magma. According to the analysis of mineral composition, amphibole in syenite is mostly ferro-edenite, and the pressure is calculated as 3.3~4.9 kb with 11.9~17.3 km of emplacement depth. Biotite and pyroxene are plotted in the region of annite and hedenbergite, respectively. Based on petrochemical studies of major elements, syenite belongs to alkaline series, metaluminous, and I-type. On the other hand, the variation patterns of trace and rare earth elements of syenite differ from the patterns of diorite and granite. In the geochemical characteristics, syenite is different from gabbro-diorite spatially adjacent to syenite, as well as granite. These results suggest that each rock has been generated from the different sources of magma. Additionally, based on the experimental data, the syenitic magma can be formed (1) by the partial melting at a high pressure and dry system, (2) when the initial crystallization minerals to be residue with migration of the residual melts separated from the ascending cotectic magma (3) when fluorine compositions to be plentiful in the protolith and/or at depth of the magma. Based on the petrographic characteristics of the syenite, Sancheong syenitic magma may have been formed by partial melting in a dry system.

The Geochemical and Zircon Trace Element Characteristics of A-type Granitoids in Boziguoer, Baicheng County, Xinjiang (중국 신장 위그루자치구 바이청현 보즈구얼의 A형화강암류의 지화학 및 지르콘 미량원소특징에 대한 연구)

  • Yin, Jingwu;Liu, Chunhua;Park, Jung Hyun;Shao, Xingkun;Yang, Haitao;Xu, Haiming;Wang, Jun
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.179-198
    • /
    • 2013
  • The Boziguoer A-type granitoids in Baicheng County, Xinjiang, belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks. The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite, an aegirine or arfvedsonite alkali feldspar granite, and a biotite alkali feldspar syenite. The major rock-forming minerals are albite, K-feldspar, quartz, arfvedsonite, aegirine, and siderophyllite. The accessory minerals are mainly zircon, pyrochlore, thorite, fluorite, monazite, bastnaesite, xenotime, and astrophyllite. The chemical composition of the alkaline granitoids show that $SiO_2$ varies from 64.55% to 72.29% with a mean value of 67.32%, $Na_2O+K_2O$ is high (9.85~11.87%) with a mean of 11.14%, $K_2O$ is 2.39%~5.47% (mean = 4.73%), the $K_2O/Na_2O$ ratios are 0.31~0.96, $Al_2O_3$ ranges from 12.58% to 15.44%, and total $FeO^T$ is between 2.35% and 5.65%. CaO, MgO, MnO, and $TiO_2$ are low. The REE content is high and the total ${\sum}REE$ is $(263{\sim}1219){\times}10^{-6}$ (mean = $776{\times}10^{-6}$), showing LREE enrichment HREE depletion with strong negative Eu anomalies. In addition, the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type. The Zr content is $(113{\sim}1246){\times}10^{-6}$ (mean = $594{\times}10^{-6}$), Zr+Nb+Ce+Y is between $(478{\sim}2203){\times}10^{-6}$ with a mean of $1362{\times}10^{-6}$. Furthermore, the alkaline granitoids have high HFSE (Ga, Nb, Ta, Zr, and Hf) content and low LILE (Ba, K, and Sr) content. The Nb/Ta ratio varies from 7.23 to 32.59 (mean = 16.59) and the Zr/Hf ratio is 16.69~58.04 (mean = 36.80). The zircons are depleted in LREE and enriched in HREE. The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly. The Boziguoer A-type granitoids share similar features with A1-type granites. The average temperature of the granitic magma was estimated at $832{\sim}839^{\circ}C$. The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature, anhydrous, and low oxygen fugacity conditions.

Applied Petrologic Study of the Daebo Biotite Granites in the mid Gyeonggi Massif (경기육괴 중부에 분포하는 대보 흑운모화강암류의 응용암석학적 연구)

  • Yun, Hyun-Soo;Hong, Sei-Sun;Park, Deok-Won;Lee, Jin-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.263-275
    • /
    • 2012
  • Jurassic Daebo biotite granites, known as one of the main stone resources in the country, are widely and away distributed in the Pocheon and Yangju areas of the mid Gyeonggi massif. The objects of the study are mainly to reveal the unique characteristics of grain size, rock color, mineral composition, physical property and fracture system from the above biotite granites. Biotite granites from the Pocheon area (PG) and Yangju area (YG) are represented by coarse-grained and light gray, and medium to coarse-grained and grayish to light gray, respectively. In modes, main minerals of Qz+Af+Pl (quartz+alkali feldspar+plagioclase) are more increased in the PG, and accessories of biotite are more increased in the YG, which differences can cause the PG more bright light gray than the YG. Specific gravity (SG) shows somewhat more increasing in the YG than the PG. These differences can be caused by more increasing in biotite contents of higher specific gravity compared to the major minerals in the former than the latter. Absorption ratio (AR) and porosity (PR) of the PG and YG show the same values of 0.33 % and 0.86 %, respectively. In the correlations, PR vs SG and AR vs PR show gradually negative and distinctly positive trends, respectively. Compressive strength (CS) and tensile strength (TS) show increasing in the PG (CS: 1,775 $kg/cm^2$, TS: 87 $kg/cm^2$) than the YG (CS: 1,647 $kg/cm^2$, TS: 79 $kg/cm^2$). These strength characteristics could be attributed to the inherent rock textures of them. Abrasive hardness (AH) also shows a little increasing in PG, which can be caused by increase in quartz contents having higher hardness than the other major minerals. Orientations of fracture sets from the PG and YG were compared with those of vertical rift and grain planes in Mesozoic granites of the country. From the overlapped diagram, the distribution pattern between fracture sets and above vertical planes suggests that microcrack systems developed in Mesozoic granites in Korea occur also in the Daebo biotite granite bodies of the mid Gyeonggi massif. From the relation diagram showing the characteristics of fracture patterns for the above two area, PG and YG may have more potentiality for dimension and non-dimension stone resources, respectively.

Geochemical and Nd-Sr Isotope Studies for Foliated Granitoids and Mylonitized Gneisses from the Myeongho Area in Northeast Yecheon Shear Zone (예천전단대 북동부 명호지역 엽리상 화강암류와 압쇄 편마암류에 대한 지구화학 및 Nd-Sr 동위원소 연구)

  • Kim, Sung-Won;Lee, Chang-Yun;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.299-314
    • /
    • 2008
  • The NE-trending Honam shear zone is a broad, dextral strike-slip fault zone between the southern margin of the Okcheon Belt and the Precambrian Yeongnam Massif in South Korea and is parallel to the trend of Sinian deformation that is conspicuous in Far East Asia. In this paper, we report geochemical and isotopic(Sr and Nd) data of mylonitic quartz-muscovite Precambrian gneisses and surrounding foliated hornblende-biotite granitoids near the Myeongho area in the Yecheon Shear Zone, a representative segment of the Honam Shear Zone. Foliated hornblende-biotite granitoids commonly plot in the granodiorite field($SiO_2=61.9-67.1\;wt%$ and $Na_2O+K_2O=5.21-6.99\;wt%$) on $SiO_2$ vs. $Na_2O+K_2O$ discrimination diagram, whereas quartz-muscovite Precambrian orthogneisses plot in the granite field. The foliated hornblende-biotite granitoids are mostly calcic and calc-alkalic and are dominantly magnesian in a modified alkali-lime index(MALI) and Fe# [$=FeO_{total}(FeO_{total}+MgO)$] versus $SiO_2$ diagrams, which correspond with geochemical characteristics of Cordilleran Mesozoic batholiths. The foliated hornblende-biotite granitoids have molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 0.89 to 1.10 and are metaluminous to weakly peraluminous, indicating I type. In contrast, Paleoproterozoic orthogneisses have peraluminous compositions, with molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 1.11 to 1.22. On trace element spider diagrams normalized to the primitive mantle, the large ion lithophile element(LILE) enrichments(Rb, Ba, Th and U) and negative Ta-Nb-P-Ti anomalies of foliated hornblende-biotite granitoids and mylonitized quartz-muscovite gneisses in the Yecheon Shear Zone are features common to subduction-related granitoids and are also found in granitoids from a crustal source derived from the arc crust of active continental margin. ${\varepsilon}_{Nd}(T)$ and initial Sr-ratio ratios of foliated hornblende-biotite granitoids with suggest the involvement of upper crust-derived melts in granitoid petrogenesis. Foliated hornblende-biotite granitoids in the study area, together with the Yeongju Batholith, show not changing contents of specific elements(Ti, P, Zr, V and Y) from shear zone to the area near the shear zone. These results suggest that no volume changes and geochemical alterations in fluid-rich foliated hornblende-biotite granitoids may occur during deformation, which mass transfer by fluid flow into the shear zone is equal to the mass transfer out of the shear zone.

Applicability of plate tectonics to the post-late Cretaceous igneous activities and mineralization in the southern part of South Korea( I ) (한국남부(韓國南部)의 백악기말(白堊紀末) 이후(以後)의 화성활동(火成活動)과 광화작용(鑛化作用)에 대(對)한 판구조론(板構造論)의 적용성(適用性) 연구(硏究)( I ))

  • Min, Kyung Duck;Kim, Ok Joon;Yun, Suckew;Lee, Dai Sung;Joo, Sung Whan
    • Economic and Environmental Geology
    • /
    • v.15 no.3
    • /
    • pp.123-154
    • /
    • 1982
  • Petrochemical, K-Ar dating, Sand Rb/Sr isotopes, metallogenic zoning, paleomagnetic and geotectonic studies of the Gyongsang basin were carried out to examine applicability of plate tectonics to the post-late Cretaceous igneous activity and metallogeny in the southeastern part of Korean Peninsula. The results obtained are as follows: 1. Bulgugsa granitic rocks range from granite to adamellite, whose Q-Ab-Or triangular diagram indicates that the depth and pressure at which the magma consolidated increase from coast to inland varying from 6 km, 0.5-3.3 kb in the coastal area to 17 km, 0.5-10 kb in the inland area. 2. The volcanic rocks in Gyongsang basin range from andesitic to basaltic rocks, and the basaltic rocks are generally tholeiitic in the coastal area and alkali basalt in the inland area. 3. The volcanic rocks of the area have the initial ratio of Sr^{87}/Sr^{86} varying from 0.706 to 0.707 which suggests a continental origin; the ratio of Rb/Sr changing from 0.079-0.157 in the coastal area to 0.021-0.034 in the inland area suggests that the volcanism is getting younger toward coastal side, which may indicate a retreat in stage of differentiation if they were derived from a same magma. The K_2O/SiO_2 (60%) increases from about 1.0 in the coastal area to about 3.0 in the inland area, which may suggest an increase indepth of the Benioff zone, if existed, toward inland side. 4. The K-Ar ages of volcanic rocks were measured to be 79.4 m.y. near Daegu, and 61.7 m.y. near Busan indicating a southeastward decrease in age. The ages of plutonic rocks also decrease toward the same direction with 73 m.y. near Daegu, and 58 m.y. near Busan, so that the volcanism predated the plutonism by 6 m.y. in the continental interior and 4 m.y. along the coast. Such igneous activities provide a positive evidence for an applicability of plate tectonics to this area. 5. Sulfur isotope analyses of sulfide minerals from 8 mines revealed that these deposits were genetically connected with the spacially associated ingeous rocks showing relatively narrow range of ${\delta}^{34}S$ values (-0.9‰ to +7.5‰ except for +13.3 from Mulgum Mine). A sequence of metallogenic zones from the coast to the inland is delineated to be in the order of Fe-Cu zone, Cu-Pb-Zn zone, and W-Mo zone. A few porphyry type copper deposits are found in the Fe-Cu zone. These two facts enable the sequence to be comparable with that of Andean type in South America. 6. The VGP's of Cretaceous and post Cretaceous rocks from Korea are located near the ones($71^{\circ}N$, $180^{\circ}E$ and $90^{\circ}N$, $110^{\circ}E$) obtained from continents of northern hemisphere. This suggests that the Korean peninsula has been stable tectonically since Cretaceous, belonging to the Eurasian continent. 7. Different polar wandering path between Korean peninsula and Japanese islands delineates that there has been some relative movement between them. 8. The variational feature of declination of NRM toward northwestern inland side from southeastern extremity of Korean peninsula suggests that the age of rocks becomes older toward inland side. 9. The geological structure(mainly faults) and trends of lineaments interpreted from the Landsat imagery reveal that NNE-, NWW- and NEE-trends are predominant in the decreasing order of intensity. 10. The NNE-trending structures were originated by tensional and/or compressional forces, the directions of which were parallel and perpendicular respectively to the subduction boundary of the Kula plate during about 90 m.y. B.P. The NWW-trending structures were originated as shear fractures by the same compressional forces. The NEE-trending structures are considered to be priginated as tension fractures parallel to the subduction boundary of the Kula plate during about 70 m.y. B.P. when Japanese islands had drifted toward southeast leaving the Sea of Japan behind. It was clearly demonstrated by many authors that the drifting of Japanese islands was accompanied with a rotational movement of a clock-wise direction, so that it is inferred that subduction boundary had changed from NNE- to NEE-direction. A number of facts and features mentioned above provide a suite of positive evidences enabling application of plate tectonics to the late Cretaceous-early Tertiary igneous activity and metallogeny in the area. Synthesizing these facts, an arc-trench system of continental margin-type is adopted by reconstructing paleogeographic models for the evolution of Korean peninsula and Japan islands. The models involve an extention mechanism behind the are(proto-Japan), by which proto-Japan as of northeastern continuation of Gyongsang zone has been drifted rotationally toward southeast. The zone of igneous activity has also been migrated from the inland in late-Cretaceous to the peninsula margin and southwestern Japan in Tertiary.

  • PDF