Browse > Article
http://dx.doi.org/10.9719/EEG.2013.46.2.179

The Geochemical and Zircon Trace Element Characteristics of A-type Granitoids in Boziguoer, Baicheng County, Xinjiang  

Yin, Jingwu (Chinese University of Geosciences)
Liu, Chunhua (State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences)
Park, Jung Hyun (Chinese University of Geosciences)
Shao, Xingkun (Detachment of General Gold Party, Chinese People's Armed Police Force)
Yang, Haitao (North-west institute of nonferrous metals geology)
Xu, Haiming (Institute of Mineral Resources, Chinese Academy of Geological Sciences)
Wang, Jun (Institute of Mineral Resources, Chinese Academy of Geological Sciences)
Publication Information
Economic and Environmental Geology / v.46, no.2, 2013 , pp. 179-198 More about this Journal
Abstract
The Boziguoer A-type granitoids in Baicheng County, Xinjiang, belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks. The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite, an aegirine or arfvedsonite alkali feldspar granite, and a biotite alkali feldspar syenite. The major rock-forming minerals are albite, K-feldspar, quartz, arfvedsonite, aegirine, and siderophyllite. The accessory minerals are mainly zircon, pyrochlore, thorite, fluorite, monazite, bastnaesite, xenotime, and astrophyllite. The chemical composition of the alkaline granitoids show that $SiO_2$ varies from 64.55% to 72.29% with a mean value of 67.32%, $Na_2O+K_2O$ is high (9.85~11.87%) with a mean of 11.14%, $K_2O$ is 2.39%~5.47% (mean = 4.73%), the $K_2O/Na_2O$ ratios are 0.31~0.96, $Al_2O_3$ ranges from 12.58% to 15.44%, and total $FeO^T$ is between 2.35% and 5.65%. CaO, MgO, MnO, and $TiO_2$ are low. The REE content is high and the total ${\sum}REE$ is $(263{\sim}1219){\times}10^{-6}$ (mean = $776{\times}10^{-6}$), showing LREE enrichment HREE depletion with strong negative Eu anomalies. In addition, the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type. The Zr content is $(113{\sim}1246){\times}10^{-6}$ (mean = $594{\times}10^{-6}$), Zr+Nb+Ce+Y is between $(478{\sim}2203){\times}10^{-6}$ with a mean of $1362{\times}10^{-6}$. Furthermore, the alkaline granitoids have high HFSE (Ga, Nb, Ta, Zr, and Hf) content and low LILE (Ba, K, and Sr) content. The Nb/Ta ratio varies from 7.23 to 32.59 (mean = 16.59) and the Zr/Hf ratio is 16.69~58.04 (mean = 36.80). The zircons are depleted in LREE and enriched in HREE. The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly. The Boziguoer A-type granitoids share similar features with A1-type granites. The average temperature of the granitic magma was estimated at $832{\sim}839^{\circ}C$. The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature, anhydrous, and low oxygen fugacity conditions.
Keywords
Southwest Tianshan; A-type granitoids; mineralogy; petrology; geochemistry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Miller, C.F., McDowell, S.M. and Mapes, R.W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, v.31, p.529-532.   DOI   ScienceOn
2 Montel, J.M. 1993. A model for monazite/melt equilibrium and the application to the generation of granitic magmas. Chemical Geology, v.110, p.127-146.   DOI   ScienceOn
3 Nesbitt, H. and Young, G.M. 1982. Early Proterozoic climates and plate motions inferred from major elements chemistry of lutites. Nature, v.299, p.715-717.   DOI
4 Pearce, J.A., Harris, N.B.W. and Tindle, A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, v.25, p.956-983.   DOI
5 Peng, Y. and Yuan, P. 1984. Petrological characteristics and petrogenesis of KuiQi granite, Fujian province. Journal of Nanjing University(Natural Sciences), v.20, n.4, p.740-752(in Chinese with English abstract).
6 Pitcher, W.S. 1983. Granite type and tectonic environment, Mountain Building Processes. London: Academic Press.
7 Rickwood, P.C. 1989. Boundary lines within petrologic diagrams which use oxides of mabor and minor elements. Lithos, v.22, p.247-263.   DOI   ScienceOn
8 Sun, S.S. and McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, v.42, p.313-345.   DOI
9 Tang, J., Gu, L., Zhang, Z., Wu, C., San, J., Wang, C., Liu, S. and Zhang, G. 2008. The Cathodoluminescence and REE characteristics of Zircon hydrothermal hyperplasia edge from Gneissic granite, Jianshuiquan. Progress in Natural Science, v.18, n.7, p.769-777(in Chinese).   DOI   ScienceOn
10 Tollo, R.P., Aleinikoff, J.N., Bartholomew, M.J., et al. 2004. Neoproterozoic A-type granitoids of the central and southern Appalachians: intraplate magmatism associated with episodic rifting of the Rodinian supercontinent. Precambrian Research, v.128, p.3-38.   DOI   ScienceOn
11 Tong, Y., Wang, T., Hong, D., Han, B., Zhang, J., Shi, X. and Wang, C. 2010. Spatial and temporal distribution of the Carboniferous Permian granitoids in northern Xinjiang and its adjacent areas and its tectonic significance. Acta Petrologica ET Mineralogica, v.29, n.6, p.619-641(in Chinese with English abstract).
12 Turner, S.P., Foden, J.D. and Morrison, R.S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Pathaway Ridge, South Australia. Lithos, v.28, p.151-179.   DOI   ScienceOn
13 Volkert, R.A., Feigenson, M.D., Patino, L.C., et al. 2000. Sr and Nd isotopic compositions age and petrogenesis of A-type granitoids of the Vernon Supersuite, New Jersey Highlands, USA. Lithos, v.50, p.325-347.   DOI   ScienceOn
14 Wang, D., Zhao, G. and Qiu, J. 1995. The tectonic constraint on the late Mesozoic A-type granitoids in eastern china. Geological Journal of Universities, v.1, n.2, p.13- 21(in Chinese with English abstract).
15 Wang, Q., Zhao, Z. and Xiong, X. 2000. The Ascertainment of Late-Yanshanian A-type Granite in Tongbai-Dabie Orogenic Belt. Acta Petrologica Et Mineralogica, v.19, n.4, p.297-306(in Chinese with English abstract).
16 Wang, Z., Gong, Q., Sun, X., Wu, F. and Wang, W. 2012. LA-ICP-MS Zircon U-Pb Geochronology of Quartz Porphyry from the Niutougou Gold Deposit in Songxian County, Henan Province. Acta Geologica Sinica( English Edition), v.86, n.2, p.370-382.   DOI   ScienceOn
17 Whalen, J.B., Currie, K.L. and Chappell, B.W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol, v.95, p.407-419.   DOI   ScienceOn
18 Xie, L., Wang, R., Chen, X., Qiu, J. and Wang, D. 2005. Th-rich zircon from peralka line A-type granite: Minera- logical features and petrological implications. Chinese Science Bulletin, v.50, n.8, p.809-817.
19 Wones, D.R. and Eugster, H.P. 1965. Stability of biotite experiment, theory, and application. America Mineral, v.50, p.1228-1235.
20 Wu, C., Gao, Q., Guo, H., Guo, X., Liu, L., Gao, Y., Lei, M., Qing, H. and Chen, Q. 2010. Zircon SHRIMP Dating of intrusive rocks from the Tongguanshan Ore-Field in Tongling, Anhui, China. Acta Geologica sinica, v.84, n.12, p.1746-1758(in Chinese with English abstract).
21 Xu, B., Yan, G., Zhang, C., Li, Z. and He, Z. 1998. Petrological subdivision and source material of A-type granites. Earth Science Frontiers(China University of Geosciences, Beijing), v.5, n.3, p.113-124(in Chinese with English abstract).
22 Yang, C. 1984. A brief introduction about A-type granite. Yunnan Geology, v.8, n.2, p.202-204(in Chinese).
23 Yang, J., Peng, J., Zhao, J., Fu, Y., Yang, C. and Hong, Y. 2012. Petrogenesis of the Xihuashan Granite in Southern Jiangxi Province, South China:Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd Isotopes. Acta Geologica Sinica(English Edition), v.86, n.1, p.131-152.   DOI   ScienceOn
24 Yu, S. and Zhang, J. 2010. Provenance and age of gneisses in the Dulan area, North Qaidam UPH metamorphic belt Evidence from zircon U-Pb geochronology, REE and Hf isotopic analyses. Acta Petrologica Sinica, v.26, n.7, p.2083-2098(in Chinese with English abstract).
25 Zhang, M. 1997. Relationship between intracontinental compressional orogenic belts and intracontinental forel and basins-an example of northern Tarim and southern Tianshan. Geoscience, v.11, n.4, p.461-470(in Chinese with English abstract).
26 Zhang, Q. 2012. Could granitic magmas experience fractionation and evolution? Acta Petrologica Et Mineralogica, v.31, n.2, p.252-260(in Chinese with English abstract).
27 Zou, T., Lu, F., Xu, Y., et al.. 2004. The study on the mineral- forming conditions of the alkaline rock belts and rare earth, gemstone and diamond in the north margin of Tarim. Bei jing: Metallurgical Industry Press(in Chinese).
28 Zhao, Z., Wang, Z., Zou, T. and A. Masuda. 1996. Study on petrogenesis of alkali-rich intrusive rocks of ulungur, Xinjiang. Geochimica, v.25, n.3, p.205-220(in Chinese with English abstract).
29 Zhu, J., Zhang, P., Xie, C., Zhang, H. and Yang, C. 2006. The Huashan-Guposhan A-type Granitoid Belt in the Western Part of the Nanling Mountains: Petrology, Geochemistry and Genetic Interpretations. Acta Geologica Sinica, v.80, n.4, p.529-542(in Chinese with English abstract).
30 Zou, T. and Li, Q. 2006. Rare and rare earth metallic deposits in Xinjiang, China. Bei jing: Geological Publishing House(in Chinese).
31 Bonin, B. 2007. A-type granites and related rocks, Evolution of a concept, problems and prospects. Lithos, v.97, p.1-29.   DOI   ScienceOn
32 Abdel-Rahman, A.M. 1994. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. Journal of petrology, v.35, p.525-541.   DOI   ScienceOn
33 Barbarin, B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, v.46, p.605-626.   DOI   ScienceOn
34 Batchelor, R.A. and Bowden, P. 1985. Petrogenetic interpretation of granitoid rock series using multication parameters. Chemical geology, v.48, p.43-55.   DOI   ScienceOn
35 Dostal, J., Chatterjee, A.K. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton(Nova Scotia, Canada). Chemical Geology, v.163, p.207-218.   DOI   ScienceOn
36 Charoy, B. and Raimbault, L. 1994. Zr-, Th-, and REE-rich biotite differentiates in the A-type granite pluton of Suzhou(Eastern China): The key role of fluorine. Journal of petrology, v.35, p.919-962.   DOI   ScienceOn
37 Collins, W.J., Beams, S.D., White, A.J.R., et al. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions in Mineral Petrology, v.80, p.189-200.   DOI   ScienceOn
38 Dickin, A.P. 1994. Nd isotope chemistry of Tertiary igneous rocks from Arran, Scotland: Implications for magma evolution and crustal structure. Geological Magazine. v.131, p.329-333.   DOI
39 Eby, G.N. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenisis. Lithos, v.26, p.115-134.   DOI   ScienceOn
40 Eby, G.N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, v.20, p.641-644.   DOI
41 Frost, B.R., Barnes, C.G., Collins, W.J., et al. 2001. A geochemical classification for granitic rocks. Journal of petrology, v.42, p.2033-2048.   DOI   ScienceOn
42 Frost, C.D., Frost, B.R., Chamberlain, K.R., et al. 1999. Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: A reduced, rapakivi-type anorogenic granite. Journal of petrology, v.40, p.1771-1802.   DOI
43 Frost, C.D. and Frost, B.R. 1997. Reduced rapakivi-type granites: The tholeiite connection. Geology, v.25, p.647- 650.   DOI
44 Green, T.H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, v.120, p.347-359.   DOI   ScienceOn
45 Jiang, C., Mu, Y., Bai, K., Zhao, X., Zhang, H. and Hei Aizhi. 1999. Chronology, Petrology, geochemistry and tectonic environment of granitoids in the southern Tianshan Mountain, western China. Acta Petrologica Sinica, v.15, n.2, p.298-308(in Chinese).
46 Hong, D., Wang, S., Han B. and Jin, M. 1995. The tectonic environment classification and identifying features of the alkali granite. Science China(Series B), v.25, n.4, p.418-426(in Chinese).
47 Huang, H., Zhang, D., Zhang, Z., Zhang, S., Li, H. and Xue, C. 2010. Petrology and geochemistry of the Chuanwulu alkaline complex in South Tianshan: Constraints on petrogenesis and tectonic setting. Acta Petrologica Sinica, v.26, n.3, p.947-962(in Chinese with English abstract).
48 Huang, H., Zhang, Z., Zhang, D., Du, H., Ma, L., Kang, J. and Xue, C. 2011. Petrogenesis of Late Carboniferous to Early Permian Granitoid Plutons in the Chinese South Tianshan: Implications for Crustal Accretion. Acta Geologica Sinica, v.85, n.8, p.1305-1333(in Chinese with English abstract).
49 Katongo, C., Koller, F., Kloetzli, U., et al. 2004. Petrography, geochemistry, and geochronology of granitoid rocks in the Neoproterozoic-Paleozoic Lufilian-Zambezi belt, Zambia: Implications for tectonic setting and regional correlation. Journal of African Earth Science, v.40, p.219-244.   DOI   ScienceOn
50 King, P.L., Chappell, B.W., Allen, C.M., et al. 2001. Are Atype granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australia Journal of Earth Science, v.48, p.501-514.   DOI   ScienceOn
51 King, P.L., White, A.J.R. and Chappell, B.W. 1997. Characterization and origin of aluminous A-type granites of the Lachlan Fold Belt, southeastern Australia. Journal of petrology, v.36, p.371-391.
52 Liu, C., Lei, M., Wu, C., Yin, J., Shao, X. and Yang, H. 2013. Backscattered electron detection and the charactetistics of cathodoluminescence of the minerals in Atype granitoids from Boziguoer, Baicheng County, Xinjiang. Journal of Chinese electron microscopy society, v.32, n.1, p.42-46(in Chinese with English abstract).
53 Li, X., Xiao, W. and Zhou, Z. 2004. $^{40}Ar/^{39}Ar$ age determination on the Late Devonian tectonic event along the southern margin of the South Tianshan Mountains and its significance. Acta Petrologica Sinica, v.20, n.3, p.691-696(in Chinese with English abstract).
54 Litvinovsky, B.A., Jahn, B.M., Zanvilevich, A.N., et al. 2002. Petrogenesis of syenite-granite suites from the bryansky complex(Transbaikalia, Russia): Implications for the origin of A-type granitoid magmas. Chemical Geology, v.189, p.105-133.   DOI   ScienceOn
55 Litvinovsky, B.A., Steele, I.M. and Wickham, S.M. 2000. Silicic Magma Formation in Overthickened Crust: Melting of Charnockite and Leucogranite at 15, 20 and 25 kbar. Journal of petrology, v.41, p.717-737.   DOI   ScienceOn
56 Liu, C., Yin, J., Wu, C., Cai, J., Shao, X., Yang, H., Gao, Y., Lei, M., Xu, H. and Wang, J. 2012. Mineralogy and temperature of magma generation for A-type granitoids in Boziguoer, Baicheng County, Xinjiang. Acta Petrologica ET Mineralogica, v.31, n.4, p.589-602(in Chinese with English abstract).
57 Liu, C., Xu, B., Zou, T., Lu, F., Tong, Y. and Cai, J. 2004. Petrochemistry and tectonic significance of hercynian alkaline rocks along the northern margin of the Tarim platform and its adjacent area. Xin Jiang Geology, v.22, n.1, p.43-49(in Chinese with English abstract).
58 Loiselle, M.C. and Wones, D.R. 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstract progress, v.11, p.468.
59 Maniar, P.D. and Piccoli, P.M. 1989. Tectonic discrimination of granitiods. Geological Society of America Bulletin, v.101, p.635-645.   DOI