• Title/Summary/Keyword: Alkali corrosion

Search Result 67, Processing Time 0.025 seconds

Status and Prospect of Test Methods of Quality Silicone Water Repellent for Protecting Reinforced Concrete

  • Sun, H.Y.;Yuan, Z.Y.;Yang, Z.;Shan, G.L.;Shen, M.X.
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.141-150
    • /
    • 2017
  • Impregnating with quality silicone water repellent on the concrete surface is an effective method of protecting concrete. Quality silicone water repellent has been widely used in the engineering profession because of its desirable properties such as hydrophobicity, keeping concrete breathable and preserving the original appearance of the concrete. The companies in China that produce silicone water repellent are listed. Test methods in the specifications or standards about silicone water repellent in China are summed. The test methods relative to durability of concrete impregnated with silicone water repellent (such as resistant to chloride ion penetration, resistant to alkali, resistance to freezing and thawing and weatherability etc.) and the constructive quality (such as water absorption rate, impregnating depth and the dry velocity coefficient etc.) are compared and analyzed. The results indicate that there are differences among test methods relative to different specifications with the same index and therefore, confusion has ensued when selecting test methods. All test methods with the exception of the method of water absorption rate by using a Karsten flask are not non-destructive methods or conducted in a laboratory. Finally, further research on silicone water repellent during application is proposed.

Effect of Sodium Aluminate Concentration in Electrolyte on the Properties of Anodic Films Formed on AZ31 Mg Alloy by Plasma Electrolytic Oxidation (AZ31 마그네슘 합금의 플라즈마 전해 산화에서 Sodium Aluminate 농도가 산화막 특성에 미치는 영향)

  • Lee, Jong-Seok;Baek, Hong-Gu;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.5
    • /
    • pp.227-232
    • /
    • 2012
  • Magnesium alloy have good physical properties such as good castability, good vibration absorption, high strength/weight ratios. Despite the desirable properties, the poor resistance of Mg alloy impedes their use in many various applications. Therefore, magnesium alloy require surface treatment to improve hardness, corrosion and wear resistance. Plasma Electrolytic Oxidation (PEO) is one the surface treatment methods to form oxide layer on Mg alloy in alkali electrolyte. In comparison with Anodizing, there is environmental process having higher hardness and faster deposition rate. In this study, the characteristics of oxide film were examined after coating the AZ31 Mg alloy through the PEO process. We changed concentration of sodium aluminate into $K_2ZrF_6$, KF base electrolyte. The morphologies of the coating layer were characterized by using scanning electron microscopy (SEM). Corrosion resistance also investigated by potentiodynamic polarization analysis. As a result, propertiy of oxide layer were changed by concentration of sodium aluminate. Increasing with concentration of sodium aluminate in electrolyte, the oxidation layer was denser and the pore size was smaller on the surface.

The corrosion of the opaque zone induced under stress oscillation in PET film (PET 필름에서 응력 진동으로 유도된 불투명 존의 부식)

  • 이종영;윤석영;박찬영;박성수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.5
    • /
    • pp.367-372
    • /
    • 2000
  • The film-type specimen of poly ethylene terephthalate (PET) was stepwise elongated under tension with various speed range of about 0.5~500 mm/min, and then the necking behavior during its plastic deformation was observed. When elongated at the speed range of about 20~100 mm/min, stress oscillation was apparently occurred in the stress-strain curve. When elongated at the speed range of about 200~500 mm/min, stress oscillation was not did. The transparent/opaque zone and cross-section area in the specimen elongated at the speed of about 50 mm/min were examined using the optical microscopy and scanning electron microscopy. The corrosion characteristic of the specimen elongated at the speed of about 50 mm/min in 3.8 M NaOH alkali solution was examined using the optical microscopy.

  • PDF

Characteristics of Al Alloy as a Material for Hydrolysis Reactor of NaBH4 (NaBH4 가수분해 반응기 소재로서 알루미늄 합금의 특성 연구)

  • Jung, Hyeon-Seong;Oh, Sung-June;Jeong, Jae-Jin;Na, Il-Chai;Chu, Cheun-Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.677-681
    • /
    • 2015
  • Aluminum alloy was examined as a material of low weight reactor for hydrolysis of $NaBH_4$. Aluminum is dissolved with alkali, but there is NaOH as a stabilizer in $NaBH_4$ solution. To decrease corrosion rate of aluminum, decrease NaOH concentration and this result in loss of $NaBH_4$ during storage of $NaBH_4$ solution. Therefore stability of $NaBH_4$ and corrosion of aluminum should be considered in determining the optimum NaOH concentration. $NaBH_4$ stability and corrosion rate of aluminum were measured by hydrogen evolution rate. $NaBH_4$ stability was tested at $20{\sim}50^{\circ}C$ and aluminum corrosion was measured at $60{\sim}90^{\circ}C$. The optimum concentration of NaOH was 0.3 wt%, considering both $NaBH_4$ stability and aluminun corrosion. $NaBH_4$ hydrolysis reaction continued 200min in aluminum No 6061 alloy reactor with 0.3 wt% NaOH at $80{\sim}90^{\circ}C$.

Investigating the Cause of Ash Deposition and Equipment Failure in Wood Chip-Fueled Cogeneration Plant (우드칩을 연료로 하는 열병합발전소의 회분 퇴적 및 설비 고장 원인 분석)

  • Min Ji Song;Woo Cheol Kim;Heesan Kim;Jung-Gu Kim;Soo Yeol Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.187-192
    • /
    • 2023
  • The use of biomass is increasing as a response to the convention on climate change. In Korea, a method applied to replace fossil fuels is using wood chips in a cogeneration plant. To remove air pollutants generated by burning wood chips, a selective denitrification facility (Selective catalytic reduction, SCR) is installed downstream. However, problems such as ash deposition and descaling of the equipment surface have been reported. The cause is thought to be unreacted ammonia slip caused by ammonia ions injected into the reducing agent and metal corrosion caused by an acidic environment. Element analysis confirmed that ash contained alkali metals and sulfur that could cause catalyst poisoning, leading to an increase in the size of ash particle and deposition. Measurement of the size of ash deposited inside the facility confirmed that the size of ash deposited on the catalyst was approximately three times larger than the size of generally formed ash. Therefore, it was concluded that a reduction in pore area of the catalyst by ash deposition on the surface of the catalyst could lead to a problem of increasing differential pressure in a denitrification facility.

Interfacial and Pull-out Properties of PVA and PET Fiber with UV Irradiation in Cementitious Composites (시멘트 복합체 내에서 UV처리에 따른 PVA 및 PET섬유의 계면 및 매입인발특성)

  • Jeon, Esther;Lee, Sang-Soo;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.401-404
    • /
    • 2006
  • Much of requirements to the civil and building structures have been changed in accordance with the social and economic progress. Ductility of high performance fiber reinforced cementitious composites(HPFRCCs), which exhibit strain hardening and multiple crackling characteristics under the uniaxial tensile stress is drastically improved. In HPFRCC application, PVA fiber has been dominantly used as a reinforcement because of its excellent alkali resistant nature as well as high strength. But the inherent strong hydrophilicity of PVA fiber promotes the moisture absorption in cement matrix and thus it may cause the corrosion of steel structure. Therefore, it is necessary to control the interfacial adhesion of cement composites. In present study, to control the interfacial adhesion of the cementitious composites reinforced by PVA fiber, UV irradiation of the PVA fiber were performed and their effects on the adhesion property and general characteristics were investigated extensively.

  • PDF

The Performance and Application of Repair System for the Exterior Wall According to the Durability Improvement in the RC Structure (Part1. Theoretical approach to the repair technic) (내구성 향상을 고려한 R.C조 외벽 보수 시스템의 성능과 그 활용 (제1보 : 열화 요인별 외벽 보수기술))

  • Kwon, Young-Jin;Kim, Chul-Ho;Kwak, Young-Jun;Park, Deuk-Kon;Choi, Long
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.134-138
    • /
    • 1995
  • The reinforced concrcte structure were once belicved to have permanent durability. However, it is now spoiled by durability failure caused by the corrosion of embeded steel reingorcement carbonation. alkali-aggregate reaction and salt attack Recently. salt damage has been also spreading. Salt damage is found in concrete structures built using seasands or certain admixtures containing calcium chlorides and in coastal structures frequently caught in seawater spray or blown by seawind It is the aim of this study to investigate the performance and application of new repair system for the exterior wall according to the durability improvement in the RC structures.

  • PDF

Degradation mechanisms of concrete subjected to combined environmental and mechanical actions: a review and perspective

  • Ye, Hailong;Jin, Nanguo
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.107-119
    • /
    • 2019
  • In-service reinforced concrete structures are simultaneously subjected to a combination of multi-deterioration environmental actions and mechanical loads. The combination of two or more deteriorative actions in environments can potentially accelerate the degradation and aging of concrete materials and structures. This paper reviews the coupling and synergistic mechanisms among various deteriorative driving forces (e.g. chloride salts- and carbonation-induced reinforcement corrosion, cyclic freeze-thaw action, alkali-silica reaction, and sulfate attack). In addition, the effects of mechanical loads on detrimental environmental factors are discussed, focusing on the transport properties and damage evolution in concrete. Recommendations for advancing current testing methods and predictive modeling on assessing the long-term durability of concrete with consideration of the coupling effects are provided.

A study on mechanical properties of concrete including activated recycled plastic waste

  • Ashok, M.;Jayabalan, P.;Saraswathy, V.;Muralidharan, S.
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.207-215
    • /
    • 2020
  • This paper describes the experimental studies carried out to determine the properties of fresh and hardened concrete with Recycled Plastic Waste (RPW) as a partial replacement material for fine aggregates. In the experimental study, RPW was used for replacing river sand and manufactured sand (M sand) aggregates in concrete. The replacement level of fine aggregates was ranging from 5% to 20% by volume with an increment of 5%. M40 grade of concrete with water cement ratio of 0.40 was used in this study. Two different types of RPW were used, and they are (i) un-activated RPW and (ii) activated RPW. The activated RPW was obtained by alkali activation of un-activated RPW using NaOH solution. The hardened properties of the concrete determined were dry density, compressive strength, split tensile strength, flexural strength and ultrasonic pulse velocity (UPV). The properties of the concrete with river sand, M sand, activated RPW and un-activated RPW were compared and inferences were drawn. The effect of activation using NaOH solution was investigated using FT-IR study. The micro structural examination of hardened concrete was carried out using Scanning Electron Microscopy (SEM). The test results show that the strength of concrete with activated RPW was more than that of un-activated RPW. From the results, it is evident that it is feasible to use 5% un-activated RPW and 15% activated RPW as fine aggregates for making concrete without affecting the strength properties.

Investigation of Local Flow Parameters Caused by Flow Acceleration Corrosion Downstream of an Orifice in a Piping System (배관계 오리피스 하류에서 유동가속부식으로 인한 국소 유동 파라미터에 대한 조사)

  • Kim, Kyung-Hoon;Cho, Yun-Su;Kim, Hyung-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.377-385
    • /
    • 2013
  • In this study, the performance of an impeller according to blade length and pitch angle was studied experimentally by building a variable pitch impeller while changing blade length to review the effect of blade length and pitch angle on a fan's performance. The pitch angle was changed in six steps from $20^{\circ}{\sim}45^{\circ}$ at intervals of $5^{\circ}$ while the blade lengths were changed to 90 mm, 100 mm, 110 mm and 120 mm with an identical airfoil shape while carrying out the experiment. The results are summarized as follows : The air flow per static pressure of axial fans increased linearly with increase of pitch angle, but the high static pressure showed a decrease at a pitch angle of $35^{\circ}$. The shaft power increased proportionally to the pitch angle at all blade lengths; the larger the pitch angle, the larger the measured increase of shaft power. This is because the drag at the fan's front increases with the pitch angle. In the axial fans considered in this research, the flow and incre.