• Title/Summary/Keyword: Alkali carbonate

Search Result 69, Processing Time 0.028 seconds

The Strength Properties of Alkali-Activated Slag Mortars by Combined Caustic Alkali with Sodium Carbonate as Activator (가성알칼리와 탄산나트륨을 혼합한 활성화제를 사용한 알칼리 활성화 고로슬래그 모르타르의 강도 특성)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.745-752
    • /
    • 2012
  • This paper studies the effect of the compressive strength for combined alkali-activated slag mortars. The effect of activators such as alkali type and dosage factor on the strength was investigated. The alkalis combinations made using five caustic alkalis (sodium hydroxide (NaOH, A series), calcium hydroxide ($Ca(OH)_2$, B series), magnesium hydroxide ($Mg(OH)_2$, C series), aluminum hydroxide ($Al(OH)_3$, D series), and potassium hydroxide (KOH, E series)) with sodium carbonate ($Na_2CO_3$) were evaluated. The mixtures were combined in different dosage at 1M, 2M, and 3M. The study results showed that the compressive strength of combined alkali-activated slag mortars tended to increase with increasing sodium carbonate. The strength of combined alkali-activated slag mortars was better than that of control cases (without sodium carbonate). The result from scanning electron microscopy (SEM) analysis confirmed that there were reaction products of calcium silicate hydrate (C-S-H) and alumina-silicate gels from combined alkali-activated slag specimens.

Investigation of Alkali-Aggregate Reaction of Abroad Aggregates (Using Area of KOREA Cement) (첨가 이온종류에 따른 외국 골재의 알카리.골재 반응성 조사연구 (한국 시멘트 사용 지역 중심))

  • 현석훈;엄태형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.111-117
    • /
    • 1995
  • The alkali-aggregate reaction is a reaction between the alkali metals in the pore water of a concrete and an unstable mineral of the aggregate. There are three types of alkali-aggregate reation which causes deterioration of concrete, such as alkali-silicate reation, alkali-carbonate reaction and alkali-silica reation. Deterioration due to alkali-silica reation is more comon than that due to either the alkali-silicate or alkali-carbonate reaction. The alkali-silica reation is a reaction between the hydroxyl ions in the pore water of a concrete and silica which exists in signigicant quantities in the aggregate. In this PAPER, Alkali-aggregate reactions of mortar made with various abroad aggregate were investigated using XRD, microscope, chemical and physical tests. In additions, the effects of the texture of aggregate, Na, K, CI ion concentrations added to the mortar, on these reactions were studied.

  • PDF

Effects of Alkaline reagents on Textural and Sensory Properties of Ramyon (알카리제의 조성에 따른 라면의 조직감과 관능적 특성)

  • Jeong, Jae-Hong
    • Journal of the Korean Society of Food Culture
    • /
    • v.13 no.4
    • /
    • pp.261-266
    • /
    • 1998
  • In an attempt to evaluate the effects of alkali agents on properties of Ramyon, cooking quality, textural and sensory properties were examined. The shear extrusion force of Ramyon made from sample A(potassium carbonate 64%, sodium carbonate 14%, sodium pyrophosphate 2% and sodium metaphosphate 20%), sample B(potassium carbonate 31%, sodium carbonate 39% , sodium pyrophosphate 1%, sodium metaphosphate 15%, sodium polyphosphate 8%, sodium phosphate monobasic 4% and sodium phosphate dibasic 2%), sample C(potassium carbonate 60%, sodium carbonate 33% and sodium pyrophosphate 7%), and sample D(potassium carbonate 44%, sodium carbonate 27%, sodium metaphosphate 27% and sodium polyphosphate 2%) were 12.80(kgf), 10.35(kgf), 9.05(kgf) and 8.45(kgf), respectively, but that of control I was 5.24(kgf). The hardness of Ramyon manufactured with sample A, B, C and D were 18.57(kgf), 16.48(kgf), 14.26(kgf) and 12.34(kgf), respectively, but that of control I was 11.23(kgf). At cooking quality examination of Ramyon made from several alkali agents, weight of cooked Ramyon was increased but volume was appeared in vice versa. Extraction amounts of Ramyon manufactured with several alkali agents during cooking were from 35% to 38%, but that of control I was 70%. These changes will provided many advantages in the preparation of Ramyon. The $I_2$ reaction value(${\alpha}-degree$ of noodle) of Ramyon manufactured with several alkali agents and control were shown to almost same values, from 2.10 to 2.20. Sensory properties of cooked Ramyon which was manufactured with several alkali agents showed quite acceptable.

  • PDF

Chemical Poisoning of Ni/MgO Catalyst by Alkali Carbonate Vapor in the Steam Reforming Reaction of DIR-MCFC

  • 문형대;임태훈;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1413-1417
    • /
    • 1999
  • Chemical poisoning of Ni/MgO catalyst was induced by hot alkali carbonate vapor in molten carbonate fuel cell (MCFC), and the poisoned (or contaminated) catalyst was characterized by TPR/TPO, FTIR, and XRD analysis. Carbonate electrolytes such as K and Li were transferred to the catalyst during DIR-MCFC operation at 650 ℃. The deposition of alkali species on the catalyst consequently led to physical blocking on catalytic active sites and structural deformation by chemical poisoning. TPR/TPO analysis indicated that K species enhanced the reducibility of NiO thin film over Ni as co-catalyst, and Li species lessened the reducibility of metallic Ni by chemical reaction with MgO. FTIR analysis of the poisoned catalyst did not exhibit the characteristic ${\vector}_1$$(D_{3h})$ peaks (1055 $cm^{-1},\;1085\;cm{-1})$ for pure crystalline carbonates, instead a new peak (1120 $cm^{-1})$ was observed proportionally with deformed alkali carbonates. From XRD analysis, the oxidation of metallic Ni into $Ni_xMg_{1-x}O$ was confirmed by the peak shift of MgO with shrinking of Ni particles. Conclusively, hot alkali species induced both chemical poisoning and physical deposition on Ni/MgO catalyst in DIR-MCFC at 650 ℃.

Influence of Blended Activators on the Physical Properties of Alkali-activated Slag Mortar (알칼리 활성화 슬래그 모르타르의 특성에 미치는 혼합 활성화제의 영향)

  • Kim, Tae Wan;Park, Hyun Jae;Seo, Ki Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.26-33
    • /
    • 2012
  • This paper reported on the effect of blended activator on the physical properties of alkali-activated slag mortar. Five different activators(caustic alkalis) were used: sodium hydroxide(NaOH, A Case), calsium hydroxide($Ca(OH)_2$, B Case), magnesium hydroxide($Mg(OH)_2$, C Case), aluminum hydroxide($Al(OH)_3$, D Case), and potassium hydroxide(KOH, E Case). We blended five caustic alkalis with sodium carbonate($Na_2CO_3$). The dosage of five caustic alkalis was 3M and sodium carbonate was 1M, 2M and 3M. The result of flow and setting time was decrease as the dosage of sodium carbonate increase. But the compressive strength was increase as the dosage of sodium carbonate increase. It was shown that there is a good effect of blended caustic alkalis with sodium carbonate in alkali-activated slag mortar.

Effects of Free Alkali and Moisture on Sucrose Polyesters Synthesis (유리 알카리 및 수분이 sucrose polyesters 합성에 미치는 영향)

  • Chung, Ha-Yull;Kim, Suk-Ju;Yoon, Sung-Woo;Yoon, Hee-Nam;Kong, Un-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.247-250
    • /
    • 1992
  • Effects of free alkali and moisture on sucrose polyesters (SPE)-possible non calorie fat substitute-synthesis were investigated using a model system composed of sodium oleate, sucrose, potassium carbonate and methyl oleate. Trace amounts of free alkali in sodium oleate were found to interefere with SPE synthesis. When free alkali content in sodium oleate was varied gradually from 0% to 5%(w/w), the yield of SPE production was reduced from 92% to 45.5%. The moisture absorbed in sodium oleate, sucrose and potassium carbonate during storage also interefered with SPE synthesis. The yield (92%) of SPE production with dried ($105^{\circ}C$.6 hrs) reactants and catalysts was higher than that (89%) of SPE production with non-dried. Soybean oil fatty acid sodium soaps (FASS) not containing free alkali could be manufactured with slightly less than molar ratio of sodium hydroxide to soybean oil fatty acid methyl esters (FAME). Practically, 91.7% yield of soybean oil SPE production was outcomed by minimizing free alkali and moisture which were remaining in sucrose, potassium carbonate, soybean oil FASS and soybean oil FAME.

  • PDF

The Properties of Hardened Slag by Alkali and Curing Method (알칼리 첨가 및 양생방법에 따른 슬래그 경화체의 특성)

  • 김원기;소정섭;배동인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.27-32
    • /
    • 2002
  • In this research influences of type and concentration of alkali activator and curing condition on the hydration, and properties of alkali activated blast furnace slag(AAS) concrete were investigated. Sodium carbonate and sulfate were used as alkali activators and their concentration were 4~10 weight percent with Na$_2$O equivalent to binder. The curing conditions were standard curing using 23$^{\circ}C$ water and activated curing chamber at $65^{\circ}C$. Results show that in case of sodium carbonate addition high early strengths were gained by activation of early hydration, but later strength gained was slight. On the other side sodium sulfate strengths were continuously increased with adding amount and ages. Steam curing activated early hydration so that early strengths were improved but later strengths were similar to standard curing. The strength reduction of AAS mortar with sodium sulfate was less than OPC mortar in 5% sulfuric acid solution so that AAS concrete can be useful for acid-resistance concrete.

  • PDF

Effect of Color Developing by Alkali and Heating of Cotton Fabrics Dyed with Persimmon Extract (알칼리와 열처리에 의한 면직물의 감즙염색 발색효과)

  • Kim, Ok-Soo;Jang, Jeong-Dae
    • Fashion & Textile Research Journal
    • /
    • v.13 no.6
    • /
    • pp.972-982
    • /
    • 2011
  • The purpose of this study is to improve the method of color developing with alkali solution as a promotor of color developing for feasible use. Cotton fabric was dyed with persimmon extract ranged with 0~3% alkali component with 5 types of strong to mild alkali solution. Heat treatment for color developing was applied to fabric dyed with persimmon extract and alkali mixing solution. Tests were carried out to analyze the change of surface color, ${\Delta},Ea^*b^*$, and water repellent of the dyed cotton fabric. The alkali mixing sample showed higher ${\Delta},Ea^*b^*$ value than control one without alkali mixing on the base of dyed fabric due to high color developing by alkali in the initial step of dyeing process. As alkali concentration increased, deeper dark color appeared on the fabric. The fabric color was changed to more dark in the application of sodium hydroxide, sodium carbonate, potassium carbonate in the initial step of dyeing process but color was not changed by increased heating time. However, the fabric showed a slight dark color with sodium acetate and more color change than that of the fabric dyed with persimmon extract without alkali. Therefore, sodium acetate seemed to a suitable promotor for color developing in persimmon extract dyeing. Property of water repellent was showed after color developing by heating with low concentration of alkali treatment.

Strength Development of Blended Sodium Alkali-Activated Ground Granulated Blast-Furnace Slag (GGBS) Mortar (혼합된 나트륨계열 활성화제에 의한 고로슬래그 기반 모르타르의 강도발현 특성)

  • Kim, Geon-Woo;Kim, Byeong-Jo;Yang, Keun-Hyeok;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Strength model for blasted furnace slag mortar blended with sodium was investigated in this study. The main parameters of AAS (alkali activated slag) mortar were dosage of alkali activator, water to binder ratio (W/B), and aggregate to binder ratio (A/B). For evaluating the property related to the dosage of alkali activator, sodium carbonate ($Na_2CO_3$) of 4~8% was added to 4% dosage of sodium hydroxide (NaOH). W/B and A/B was varied 0.45~0.60 and 2.05~2.85, respectively. An alkali quality coefficient combining the amounts of main compositions of source materials and sodium oxide ($Na_2O$) in sodium hydroxide and sodium carbonate is proposed to assess the compressive strength of alkali activated mortars. Test results clearly showed that the compressive strength development of alkali-activated mortars were significantly dependent on the proposed alkali quality coefficient. Compressive strength development of AAS mortars were also estimated using the formula specified in the previous study, which was calibrated using the collected database. Predictions from the simplified equations showed good agreements with the test results.

Poisoning of the Ni/MgO Catalyst by Alkali Carbonates in a DIR-MCFC (용융탄산염 연료전지에서 알칼리 탄산염에 의한 Ni/MgO 촉매의 피독)

  • Moon, Hyeung-Dae;Kim, Joon-Hee;Ha, Heung Yong;Lim, Tae-Hoon;Hong, Sung-Ahn;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.754-760
    • /
    • 1999
  • The properties of the catalyst for a direct internal reforming type molten carbonate fuel cell were examined by ICP, BET, CHN, EDS, and $H_2$ chemisorption. Potassium and lithium, the components of carbonate electrolyte, were transported to the catalyst during the operation of fuel cell, and the amounts of the deposited alkali elements were reduced in the order of inlet, outlet, and the middle. From the direct correlation between the amount of alkali and the physical properties such as BET surface area and Ni dispersion, and from the observation of the lump of the alkali species on the poisoned catalyst, it was confirmed that the physical blocking of the catalyst by alkali deposition was the main reason for the deactivation. Although the amount of alkali species was greater at the inlet than at the oulet, the catalyst sampled from the outlet had lower activity. This was caused by the chemical interaction between the alkali species and the catalyst at the outlet where temperature was highest in the cell body, which was detected by FT-IR analyses.

  • PDF