• 제목/요약/키워드: Alkali burn

검색결과 9건 처리시간 0.027초

Effect of Solcoseryl in Corneal Alkali Burn Rat Model

  • Kim, Hoon;Kim, Hong-Bee;Seo, Jae-Hwi;Lee, Dong Cho;Cho, Kyong Jin
    • Medical Lasers
    • /
    • 제10권1호
    • /
    • pp.22-30
    • /
    • 2021
  • Background and Objectives Ocular alkali burns cause severe damage to the ocular tissues and vision loss. Solcoseryl is a standardized calf blood extract that normalizes the metabolic disturbance and aids in maintaining the chemical and hormonal balance and has been used to treat burns in various tissues. This study examined the effects of Solcoseryl on a rat corneal alkali burn model. Materials and Methods Twenty rats were assigned randomly to four equal groups, including alkali burn, hyaluronic acid, Solcoseryl eyedrop, and Solcoseryl gel. A corneal alkali burn was induced by a NaOH-soaked paper disc. The treatments were given twice a day, every day. The wound area was measured after 24 and 48 hours, and the degree of neovascularization and corneal opacity were scored every week. The rats were sacrificed after three weeks for immunohistochemistry (IHC) to compare the level of inflammatory cytokines, IL-1β, IL-6, and TNF-α. The thickness of the retinal layers was compared to observe any changes in the retina. Results The use of Solcoseryl on corneal alkali burn accelerated wound healing with less neovascularization, greater opacity, and less cataract. IHC showed that the inflammation of the cornea was controlled by both the hyaluronic acid and Solcoseryl treatments. On the other hand, the inflammation had spread to the retina. When the dosage forms were compared, eyedrops were more effective on corneal inflammation, while the gel-type had a greater effect on retinal inflammation. Conclusion Solcoseryl was effective in accelerating the wound healing rate on a corneal alkali burn but could not prevent the spread of inflammation from the cornea to the retina. Eyedrops were more effective on inflammation in the cornea, and the gel was more effective in the retina.

알칼리 화상을 입은 마우스 각막에서 상처 치유과정 중 관찰된 조직학적 변화 (Hitological Changes on the Wound Healing Process of Alkali Burned Mouse Cornea)

  • 이지영;이군자
    • 한국안광학회지
    • /
    • 제13권4호
    • /
    • pp.161-169
    • /
    • 2008
  • 목적: 알칼리 화상 후 초기 임상적 손상반응의 진행과 치료를 위한 각막 재생의 이해를 높이기 위하여, 화학적 손상 후 동반하는 다양한 인자에 대한 면역조직화학적 변화를 조사하였다. 방법: 알칼리 화상을 입은 각막의 자가치유과정을 면역형광염색법과 H-E 염색, 그리고 TUNEL assay를 통해 면역조직화학적 측면에서 관찰하였다. 결과: 화상 후 각막의 치유는 진행되었지만 각막기질(stroma)과 내피세포의 세포사는 지속적으로 관찰되었다. 각막가장자리의 혈관신생과 손상된 각막의 ${\alpha}$-SMA의 발현은 알칼리 화상 3일 후부터 나타났으며, 각막기질에서의 콜라젠 III(collagen III)의 형성과 콘드로이친황산(chondroitin sulfate)의 발현은 ${\alpha}$-smooth muscle actin(${\alpha}$-SMA)와 transforming growth factor-${\beta}$(TGF-${\beta}$)의 발현증가와 일치하는 결과를 얻었다. 결론: 각막혼탁을 막기 위해서는 알칼리 화상 후 3일 이내에 혈관신생, 콜라젠 및 콘드로이친황산의 형성을 억제하는데 주력하는 치료가 효과적일 것이라 사료된다. 이 연구는 알칼리 화상을 입은 각막의 치유과정에 있어서의 면역조직화학적 지식을 제공함으로써, 각막의 재생을 촉진하는 치료제의 개발과 이용에 초석이 되리라 사료된다.

  • PDF

Bevacizumab accelerates corneal wound healing by inhibiting TGF-βexpression in alkali-burned mouse cornea

  • Lee, Sung-Ho;Leem, Hyun-Sung;Jeong, Seon-Mi;Lee, Koon-ja
    • BMB Reports
    • /
    • 제42권12호
    • /
    • pp.800-805
    • /
    • 2009
  • This study investigated the effect of subconjunctival injections of bevacizumab, an anti-VEGF antibody, on processes involved in corneal wound healing after alkali burn injury. Mice were divided into three groups: Group 1 was the saline-treated control, group 2 received subconjunctival injection of bevacizumab 1hr after injury and group 3 received bevacizumab 1 hr and 4 days after injury. Cornea neovascularization and opacity were observed using a slit lamp microscope. Corneal repair was assessed through histological analysis and immunostaining for CD31, $\alpha$-SMA, collagen I, and TGF-$\beta$2 7 days post-injury. In group 3, injection of bevacizumab significantly lowered neovascularization and improved corneal transparency. Immunostaining analysis demonstrated a reduction in CD31, $\alpha$-SMA and TGF-$\beta$2 levels in stroma compared to group 1. These results indicate that bevacizumab may be useful in reducing neovascularization and improving corneal transparency following corneal alkali burn injury by accelerating regeneration of the basement membrane.

PEP-1-FK506BP inhibits alkali burn-induced corneal inflammation on the rat model of corneal alkali injury

  • Kim, Dae Won;Lee, Sung Ho;Shin, Min Jea;Kim, Kibom;Ku, Sae Kwang;Youn, Jong Kyu;Cho, Su Bin;Park, Jung Hwan;Lee, Chi Hern;Son, Ora;Sohn, Eun Jeong;Cho, Sung-Woo;Park, Jong Hoon;Kim, Hyun Ah;Han, Kyu Hyung;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • 제48권11호
    • /
    • pp.618-623
    • /
    • 2015
  • FK506 binding protein 12 (FK506BP) is a small peptide with a single FK506BP domain that is involved in suppression of immune response and reactive oxygen species. FK506BP has emerged as a potential drug target for several inflammatory diseases. Here, we examined the protective effects of directly applied cell permeable FK506BP (PEP-1-FK506BP) on corneal alkali burn injury (CAI). In the cornea, there was a significant decrease in the number of cells expressing pro-inflammation, apoptotic, and angiogenic factors such as TNF-α, COX-2, and VEGF. Both corneal opacity and corneal neovascularization (CNV) were significantly decreased in the PEP-1-FK506BP treated group. Our results showed that PEP-1-FK506BP can significantly inhibit alkali burn-induced corneal inflammation in rats, possibly by accelerating corneal wound healing and by reducing the production of angiogenic factors and inflammatory cytokines. These results suggest that PEP-1-FK506BP may be a potential therapeutic agent for CAI.

화학 화상의 최근 원인 물질에 관한 임상적 연구 (A Clinical Study on Recent Causing Agents of Chemical Burns)

  • 신치호;유성훈;김지훈;김동철
    • 대한화상학회지
    • /
    • 제23권1호
    • /
    • pp.7-12
    • /
    • 2020
  • Purpose: Due to rapid changes in the industrial structure in last decade, the wider various types of chemical agents were introduced. Burn surgeons should be well-informed with rapid changes of chemical burns. We present the recent incidence trends of causing agents of chemical burns. Methods: From 2010 to 2019, 92 chemical burn victims were included in this study. A retrospective study was made about the type, distribution and incidence of the causing agents of chemical burns. Initial treatments of most chemical burn wounds are copious saline irrigation by tap water, except hydrofluoric acid burn cases managed by 10% calcium gluconate injection. In alkali chemical burns on extremity, if thin eschars appear in postburn 2~3 days, acute early surgical escharectomy and split thickness skin graft were done. Results: More than 9 types of major chemicals causing chemical burns were surveyed, and the most common causing agent of chemical burns was Hydrofluoric acid (23.9%) followed by Acetic acid (19.6%) and Sodium hydroxide (8.7%). Conclusion: From 2010 to 2019, changes in the causing agent of chemical burns are that the types of major causing agents of chemical burns have increased and the distribution and incidence of causing agents have changed compared to previous reports. According to this study, more than 9 types of major chemicals causing chemical burns were surveyed, and the most common causing agent of chemical burns was Hydrofluoric acid (23.9%) followed by Acetic acid, Sodium hydroxide.

Effects of Ultra High Molecular Weight Poly-${\gamma}$-glutamic Acid from Bacillus subtilis (chungkookjang) on Corneal Wound Healing

  • Bae, Sun-Ryang;Park, Chung;Choi, Jae-Chul;Poo, Ha-Ryoung;Kim, Chul-Joong;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권4호
    • /
    • pp.803-808
    • /
    • 2010
  • Poly-${\gamma}$-glutamic acid (${\gamma}$-PGA) is a natural edible polypeptide in which glutamate is polymerized via ${\gamma}$-amide linkages. First, we assessed the eye irritancy potential of ${\gamma}$-PGA in rabbits. Additionally, we studied the effects of ${\gamma}$-PGA on corneal wound healing, due to the anti-inflammatory properties and water retaining abilities of ${\gamma}$-PGA. In this study, the effects of ${\gamma}$-PGA on corneal wound healing after an alkali burn were evaluated. Thirty eyes wounded by alkali burning in 30 white rabbits were divided into three groups: group A was treated with 0.1% 5,000 kDa ${\gamma}$-PGA for 2 days; group B was treated with 0.1% hyaluronic acid; and group C was not treated, as a control. The area of corneal epithelial defect was examined at 12, 24, 30, 36, 42, and 48 h after corneal alkali wounding to determine initial wound healing. We found that ${\gamma}$-PGA promoted corneal wound healing, compared with controls, and showed similar effects to hyaluronic acid. These results indicate that ${\gamma}$-PGA stimulates corneal wound healing by an anti-inflammatory effect and enhancing cell migration and cell proliferation. ${\gamma}$-PGA is a promising biomaterial that may be a substitute for hyaluronic acid in corneal wound healing treatment.

Possible Roles of Antarctic Krill Proteases for Skin Regeneration

  • Lee, Sung-Gu;Koh, Hye-Yeon;Lee, Hong-Kum;Yim, Joung-Han
    • Ocean and Polar Research
    • /
    • 제30권4호
    • /
    • pp.467-472
    • /
    • 2008
  • Antarctic krill has a strong proteolytic enzyme system, which comes from a combination of several proteases. This powerful activity can be easily detected by krill's superior post mortem autolysis. Mammalian skin consists of epidermis and dermal connective tissue, and functions as a barrier against threatening environments. A clot in a wound site of the skin should be removed for successful skin regeneration. Epithelial cells secrete proteases to dissolve the clot. In previous studies Antarctic krill proteases were purified and characterized. The proteolytic enzymes from Antarctic krill showed higher activity than mammalian enzymes. It has been suggested that these krill clean up the necrotic skin wound to induce a natural healing ability. The enzymes exhibited additional possibilities for several other biomedical applications, including dental plaque controlling agent and healing agent for corneal alkali burn. Considering that these versatile activities come from a mixture of several enzymes, discovering other proteolytic enzymes could be another feasible way to enhance the activity if they can be used together with krill enzymes. Molecular cloning of the krill proteases should be carried out to study and develop the applications. This review introduces possible roles of the unique Antarctic krill proteases, with basic information and suggestion for the development of an application to skin regeneration.

상악 측절치 근관치료 중 수산화칼슘 호제근충제 과충전으로 인하여 발생한 신경손상의 치험례 (Nerve Injury from Overfilled Calcium Hydroxide Root Canal Filling Paste for Maxillary Lateral Incisor Endodontic Treatment)

  • 나광명;김종배;진병로;김진욱;김진수;권대근
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제35권4호
    • /
    • pp.260-264
    • /
    • 2013
  • Calcium hydroxide root canal filing paste (vitapex) is widely used as canal filling paste for infected canal. However, chemical burn is possible because of the high alkali base of calcium hydroxide. A 57-year old woman was admitted to our clinic for consistent dull pain and paresthesia in the left upper lip, zygoma and buccal cheek area, which developed during an endodontic treatment of the left lateral incisor. Radiographic finding showed radiopaque material, which exits from the left incisor root apex, and was within the left canine and first premolar buccal soft tissue. The overfilled Vitapex extended to the soft tissue was surgically curetted. The result of the surgical curettage was favorable. Though slight hypoesthesia on the upper lip was still remained, paresthesia on zygomatic and buccal cheek area was completely recovered. As far as we know, this is the first case report of infraorbital nerve damage from overfilled Vitapex material.

MiR-199a/b-5p Inhibits Lymphangiogenesis by Targeting Discoidin Domain Receptor 1 in Corneal Injury

  • Oh, Sooeun;Seo, Minkoo;Choi, Jun-Sub;Joo, Choun-Ki;Lee, Suk Kyeong
    • Molecules and Cells
    • /
    • 제41권2호
    • /
    • pp.93-102
    • /
    • 2018
  • Discoidin domain receptor 1 (DDR1) is involved in tumorigenesis and angiogenesis. However, its role in lymphangiogenesis has been unknown. Here, we tested whether downregulation of DDR1 expression by miR-199a/b can suppress lymphangiogenesis. We also aimed to identify miRNA target site(s) in the 3' untranslated region (UTR) of DDR1. Transfection with miR-199a/b-5p mimics reduced expression of DDR1 and tube formation in primary human dermal lymphatic endothelial cells, whereas miR-199a/b-5p inhibitors showed the opposite effects. Critically, injection of miR-199a/b-5p mimics suppressed DDR1 expression and lymphangiogenesis in a corneal alkali-burn rat model. The three well-conserved seed matched sites for miR-199a/b-5p in the DDR1 3'-UTR were targeted, and miRNA binding to at least two sites was required for DDR1 inhibition. Our data suggest that DDR1 promotes enhanced lymphangiogenesis during eye injury, and miR-199a/b-5p suppresses this activity by inhibiting DDR1 expression. Thus, this miRNA may be useful for the treatment of lymphangiogenesis-related eye diseases.