• 제목/요약/키워드: Aligned Nanofibers

검색결과 15건 처리시간 0.03초

Radially patterned polycaprolactone nanofibers as an active wound dressing agent

  • Shin, Dongwoo;Kim, Min Sup;Yang, Chae Eun;Lee, Won Jai;Roh, Tai Suk;Baek, Wooyeol
    • Archives of Plastic Surgery
    • /
    • 제46권5호
    • /
    • pp.399-404
    • /
    • 2019
  • Background The objectives of this study were to design polycaprolactone nanofibers with a radial pattern using a modified electrospinning method and to evaluate the effect of radial nanofiber deposition on mechanical and biological properties compared to non-patterned samples. Methods Radially patterned polycaprolactone nanofibers were prepared with a modified electrospinning method and compared with randomly deposited nanofibers. The surface morphology of samples was observed under scanning electron microscopy (SEM). The tensile properties of nanofibrous mats were measured using a tabletop uniaxial testing machine. Fluorescence-stained human bone marrow stem cells were placed along the perimeter of the radially patterned and randomly deposited. Their migration toward the center was observed on days 1, 4, and 7, and quantitatively measured using ImageJ software. Results Overall, there were no statistically significant differences in mechanical properties between the two types of polycaprolactone nanofibrous mats. SEM images of the obtained samples suggested that the directionality of the nanofibers was toward the central area, regardless of where the nanofibers were located throughout the entire sample. Florescence images showed stronger fluorescence inside the circle in radially aligned nanofibers, with significant differences on days 4 and 7, indicating that migration was quicker along radially aligned nanofibers than along randomly deposited nanofibers. Conclusions In this study, we successfully used modified electrospinning to fabricate radially aligned nanofibers with similar mechanical properties to those of conventional randomly aligned nanofibers. In addition, we observed faster migration along radially aligned nanofibers than along randomly deposited nanofibers. Collectively, the radially aligned nanofibers may have the potential for tissue regeneration in combination with stem cells.

신경세포 재생을 위한 고배열성 Poly(${\varepsilon}$-caprolactone) 마이크로/나노섬유 제조 공정에 관한 연구 (Fabricating Highly Aligned Electrospun Poly(${\varepsilon}$-caprolactone) Micro/Nanofibers for Nerve Tissue Regeneration)

  • 윤현;이행남;박길문;김근형
    • 폴리머
    • /
    • 제34권3호
    • /
    • pp.185-190
    • /
    • 2010
  • 전기방사공정에 의해 고분자의 나노 크기의 섬유를 만드는 기술로 널리 사용되어졌으며, 제작된 나노섬유는 그 높은 표면적과 형태학적 특성때문에 조직재생 공학분야에서 많이 사용되어져 왔다. 본 연구에서는 기존의 전기방사공정을 개선한 복합전기장을 이용하여 생분해성/생체적합성 poly(${\varepsilon}$-caprolactone) (PCL) 마이크로/나노섬유를 제작하였고, 기존의 나노섬유의 배열성보다 제어가 가능한 배열성을 갖는 공정시스템을 통하여 보다 우수한 배열성을 갖는 PCL 나노섬유를 제작하였다. 고배열된 PCL 나노섬유는 신경세포 재생을 위한 세포담체로서의 가능성을 확인하고자 신경세포(PC-12)를 배양하였으며 그 결과 높은 배열성을 갖은 PCL 나노섬유 매트에서 신경세포의 배열성이 얻어짐을 확인하였다.

Morphological Study by TEM on Electrospun Nanofibers of polydioxanone

  • Nakayama, Atsushi;Kawahara, Yutaka;Tsuji, Masaki
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.299-299
    • /
    • 2006
  • Polydioxanone nanofibers for TEM observation can be produced. To collect parallelly aligned nanofibers can crystallize them partially. The SAED pattern of nanofibers drawn and/or heat-treated shows a well-developed fiber pattern, and in the patterns we can observe crystalline reflections up to third layer line.

  • PDF

$TiO_2/PVP$ 나노섬유의 제조 (Fabrication of axially aligned $TiO_2/PVP$ nanofibers)

  • 이세종
    • 한국결정성장학회지
    • /
    • 제17권1호
    • /
    • pp.30-34
    • /
    • 2007
  • [ $TiO_2/PVP$ ] 나노섬유의 배열을 증진시키기 위하여 콜렉터 접지방법을 변화시키면서 전기방사하였다. 한축방향의 배열을 가진 섬유를 만들기 위하여 두개의 전도성 기판을 콜렉터로 사용하여 전기방사하였다. 또한, 두축방향의 섬유배열을 하기 위하여 $90^{\circ}$ 각도로 배치된 콜렉터를 타이머로 조절하면서 방사하였다. 전기방사 시 나노섬유는 콜렉터 전극사이에서 전기장 효과에 의해 퍼지는 현상이 관찰되었다. 실험결과, 후자의 $TiO_2/PVP$ 나노섬유 경우 콜렉터에 정체된 전하의 해소로 인하여 방향성에 더 효과적이었다.

전기방사 방법을 사용한 기능화된 탄소나노튜브 강화 고분자 수지 나노섬유 제조에 관한 연구 (Study on the Electrospun Nanofiber Fabrication and Alignment of the Functionalized CNT Reinforced Polymer)

  • 윤여환;박주혁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.680-685
    • /
    • 2005
  • Multi-walled carbon nanotubes were purified by using the nitric acid after the mechanical cutting, which carboxylic group might be introduced into the surface of nanotubes. To enhance the dispersion of CNTs, carboxylic groups were substituted in the reaction with octadecyl amine containing a long alkyl group. Nanofibers were manufactured by electrospinning, the solution that mixed with PMMA and ODA-fuctionalized CNTs in dimethyl formamide and dispersed with ultrasonication. Diameter and alignment of nanofibers with various electrospinning parameters, such as the CNT and PMMA concentration in solution, the applied voltage, and the distance to the collector were investigated. As a result, the nanofiber diameter was increased with the increment of PMMA concentration, whereas it was reduced as the applied voltage and the spinning distance was increased. The spinning area became smaller with the distance. The nanofibers were formed without the defect on surface and well aligned in a specific concentration of PMMA and nanotubes.

  • PDF

A Study of Electrospun PVDF on PET Sheet

  • Chanunpanich, Noppavan;Lee, Byung-Soo;Byun, Hong-Sik
    • Macromolecular Research
    • /
    • 제16권3호
    • /
    • pp.212-217
    • /
    • 2008
  • PVDF ($Kynar^{(R)}$ 761) nanofibers were made by electrospinning with an external voltage of 6-10 kV, a traveling distance of 7-15 cm and a flow rate of 0.4-1 mL/h. Although the mean diameter of the fibers has not changed significantly, the conditions affected the change in diameter distribution. This was attributed to interactions, both attraction and repulsion, between the positive charges on the polymer solutions and the electrically grounded collector. Higher voltages and traveling distance increased the level of attraction between the positive charge on the polymer solution and the electrically grounded collector, resulting in a narrow diameter distribution, In addition, a high flow rate allowed a high population of uniformly charged solutions to travel to the grounded collector, which resulted in a narrow diameter distribution. The optimum conditions for electrospinning of PVDF in DMAc/acetone (3/7 by wt) were a collector voltage of 6 kV, a syringe tip to collector of 7 cm, a flux rate of 0.4 mL/h and 10 kV, 10 cm, 1 mL/h, Since PVDF is widely used as a filtration membrane, it was electrospun on a PET support with a rotating drum as a grounded collector. Surprisingly, some straight nanofibers were separated from the randomly deposited nanofibers. The straight nanofiber area was transparent, while the randomly deposited nanofiber area was opaque. Both straight nanofibers and aligned nanotibers could be obtained by manipulating the PET drum collector. These phenomena were not observed when the support was changed to an Al sheet. This suggests that a pseudo dual collector was generated on the PET sheet. No negative charge was created because the PET sheet was not a conductive material. However, less charge was created when the sheet was not perfectly attached to the metal drum. Hence, the nanotibers jumped from one grounded site to the nearest one, yielding a straight nanofiber.

Strength Increase of Medium Temperature-carbonized PAN Nano Fibers Made by Mechano-electrospinning

  • Kim, J.H.;Bajaj, B.;Yoon, S.J.;Kim, S.H.;Lee, J.R.
    • Composites Research
    • /
    • 제26권3호
    • /
    • pp.160-164
    • /
    • 2013
  • In this study, the effect of phosphoric acid (PA) as a fiber spinning aid on the strength increase of polyacrylonitrile (PAN) nano-fibers by using modified mechano-electrospinning technologies has been analyzed. The medium carbonization temperature of $800^{\circ}C$ has been selected for the future economic production of these new materials. The concentration of PAN in dimethyl sulfoxide (DMSO) was fixed as 5 wt%. The weight fraction of PA was selected as being 2%, 4%, 6%, and 8% in comparison to PAN. These solutions have been used to make the nanofibers. The mechano-electrospinning apparatus installed in KRICT was made by our own design. By using this apparatus the continous and highly aligned precursor nano-fibers have been obtained. The bundle of 50 well aligned nano diameter continuous fibers with the diametr of 10 microns with 6 wt% phosphoric acid for addition showed maximum mechanical properties of 1.6 GPa as tensile strength and 300 GPa as Young's modulus. The weight of final product can be increased 19%, which can improve the economical benefits for the application of these new materials.

온도와 전압 및 바닥면 형상에 따른 양극산화 알루미늄의 구조 (Structures of Anodic Aluminum Oxide from Anodization with Various Temperatures, Electrical Potentials, and Basal Plane Surfaces)

  • 김영애;황운봉
    • 한국정밀공학회지
    • /
    • 제33권3호
    • /
    • pp.225-230
    • /
    • 2016
  • Since the development of anodic aluminum oxide (AAO), extensive studies have been conducted ranging from fundamental research to the applications of AAO. Most of the research on AAO structures have focused on well-aligned nanoporous structures fabricated under specific conditions. This study investigated fabricable AAO structures with anodization performed with various temperatures, electrical potentials, and basal plane surfaces. As a result, nanoporous and nanofibrous structures were fabricated. The nanopores were formed at a relatively lower temperature and potential, and the nanofibers were formed at a relatively higher temperature and potential regardless of the basal plane surface. The shape of the base surface was found to influence the structural arrangement in nanoporous morphologies. These interesting findings relating to new morphologies have the potential to broaden the possible applications of AAO materials.