This paper presents a new heuristic algorithm for the machine cell(MC) formation problem. MC formation problem is represented as an unbalanced k-way network partition and the proposed algorithm uses four stage-approach to solve the problem. Four stages are natural sub-network formation, determination of intial vertexes for each sub-network, determination of initial partition, and improvement of initial partition. Results of experiments show that the suggested algorithm provides near optimal solutions within very short computational time.
오늘날 빅데이터로부터 유의미한 결과를 도출하는 연구가 활발히 진행되고 있다. 본 논문에선 빅데이터의 데이터의 영역들을 파티션(partition)으로 설정하고 각 파티션들의 대표 값을 계산하여 변수들 사이의 상관관계를 분석 할 수 있는 파티션 기반 빅데이터 분석 알고리즘을 제안한다. 본 논문에선 파티션의 크기조절이 가능한 파티션 기반 빅데이터 분석 알고리즘의 파티션 크기 변화에 따른 시각화 결과를 비교분석하였다. 제안한 파티션 기반 빅데이터 분석 알고리즘을 검증하기 위해 의류 회사 'A'의 빅데이터를 분석하여 온도와 판매 가격 변화에 따른 상품의 판매량 변화를 분석하고 시각화하여 유의미한 결과를 얻을 수 있었다.
International journal of advanced smart convergence
/
제1권2호
/
pp.30-33
/
2012
This paper propose a new design of fuzzy neural networks based on hard partition to generate the rules of the networks. For this we use hard c-means (HCM) clustering algorithm. The premise part of the rules of the proposed networks is realized with the aid of the hard partition of input space generated by HCM clustering algorithm. The consequence part of the rule is represented by polynomial functions. And the coefficients of the polynomial functions are learned by BP algorithm. The number of the hard partition of input space equals the number of clusters and the individual partitioned spaces indicate the rules of the networks. Due to these characteristics, we may alleviate the problem of the curse of dimensionality. The proposed networks are evaluated with the use of numerical experimentation.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권11호
/
pp.5491-5505
/
2017
Use of the Gaussian inverse Wishart PHD (GIW-PHD) filter has demonstrated promise as an approach to track an unknown number of extended targets. However, the partitioning approaches used in the GIW-PHD filter, such as distance partition with sub-partition (DP-SP), prediction partition (PP) and expectation maximization partition (EMP), fails to provided accurate partition results when targets are spaced closely together and performing maneuvers. In order to improve the performance of a GIW-PHD filter, this paper presents a cooperation partitioning (CP) algorithm to solve the partitioning issue when targets are spaced closely together. In the GIW-PHD filter, the DP-SP is insensitive to target maneuvers but sensitive to the differences in target sizes, while EMP is the opposite. The proposed CP algorithm is a fusion approach of DP-SP and EMP, which employs EMP as a sub-partition approach after DP. Therefore, the CP algorithm will be sensitive to neither target maneuvers nor differences in target sizes. The simulation results show that the use of the proposed CP algorithm will improve the performance of the GIW-PHD filter when targets are spaced closely together.
본 논문에서는 depth layer partition을 이용한 2D 동영상의 자동 3D 변환 기법을 제안한다. 제안하는 기법에서는 먼저 2D 동영상의 장면 전환점을 검출하여 각각의 프레임 그룹을 설정하여 움직임 연산 과정에서의 오류 확산을 방지하여 깊이맵(depth map) 생성과 정에서 오차를 줄여준다. 깊이정보는 두 가지 방법으로 생성되는데 하나는 영역 분할과 움직임 정보를 이용하여 깊이맵을 추출하는 것이고 다른 하나는 에지 방향성 히스토그램(edge directional histogram)을 이용하는 방법이다. 제안하는 기법에서는 객체와 배경을 분리하는 depth layer partition 과정을 수행한 후 생성된 두 개의 깊이맵을 원 영상에 최적이 되도록 병합하게 된다. 제안된 기법으로 신뢰도 높은 깊이맵과 결과 영상을 생성할 수 있다는 것을 다양한 실험 결과를 통해 알 수 있다.
본 논문은 대용량 주기억장치를 가진 시스템에 적합한 연관 규칙 탐사 알고리즘에 관한 연구이다. 이를 위하여 먼저 기존의 잘 알려진 알고리즘인 DHP, Partition 방법을 대용량 주기억장치를 가진 시스템에서 효율적으로 동작하도록 확장하였고, 다음 Partition 방법에 대해서 해쉬 테이블과 비트맵 기법을 적용하여 Partition 방법을 개선하는 방법을 제안하였다. 제안된 알고리즘은 실험적 환경에서 DHP와 성능이 비교되었으며, 제안하는 알고리즘이 확장된 DHP보다 최대 65%까지 성능 개선 효과가 있음을 보인다.
Fuzzy partition is a conceptual vehicle that encapsulates data into information granules. Fuzzy equalization concerns a process of building information granules that are semantically and experimentally meaningful. A few algorithms generating fuzzy partitions with fuzzy equalization have been suggested. Simulations and experiments have showed that fuzzy partition representing more characteristics of given input distribution usually produces meaningful results. In this paper, given two points and cardinality of fuzzy partition, we prove that it is not true that there always exists a fuzzy partition with fuzzy equalization in which two of points having peaks fall on the given two points. Then, we establish an algorithm that minimizes the maximum distance between given two points and adjacent points having peaks in the partition. A numerical example is presented to show the validity of the suggested algorithm.
데이터 마이닝 또는 기계학습을 위한 무감독 학습 알고리즘인 개념적 클러스터링을 이용하여 계층적 구조를 유도해낼 때 자료를 처리하는 순서에 따라 서로 다른 결과에 도달하는 양상을 보인다. 이 순서 바이어스 문제를 해결하는 방안으로 먼저 주어진 자료 세트에 분류를 시행하여 초기 분류를 형성한다. 이 분류를 통해 최종 분류의 가능한 클래스 수를 예측하고 이 정보에 기반하여 자료 분석과 중심 정렬을 통해 자료 처리 순서를 새로이 결정한다. 재배열된 자료 세트에 ITERATE 분류 과정을 적용해 새로운 분류를 생성한다. 본 논문에서는 이 과정을 반복하여 안정적이고 최적의 분류 점수를 갖도록 하는 알고리즘 REIT를 제안하였다. 이 알고리즘을 여러 자료 세트에 적용하고 순서 바이어스의 영향을 최소화하는지 여부를 실험을 통해 비교 분석하였다.
본 연구의 목적은 자연수 나눗셈의 정의를 확장하여 분수 나눗셈에 적용함으로써 초등학교 수학에서 분수 나눗셈의 알고리즘을 정당화하는데 있다. 먼저 초등학교 수학에서 분수 나눗셈을 도입할 때 고려해야 할 준거들을 도출하여 제시하였다. 이를 바탕으로 분수 나눗셈의 표준 알고리즘을 유도하는 기존의 방식들이 분수 나눗셈 도입 과정에 적절한지를 고찰하였다. 또한 분수 나눗셈을 정의하였으며, 단위원 분할 모델과 정사각형 분할 모델을 통하여 구체적 조작 활동을 함으로써 등분제와 포함제 상황의 분수 나눗셈에서 표준 알고리즘을 자연스럽게 정당화하였다.
This study suggests the partition algorithm for updating the discovered association rules in large database, because a database may allow frequent or occasional updates, and such update may not only invalidate some existing strong association rules, but also turn some weak rules into strong ones. the Partition algorithm updates strong association rules efficiently in the whole update database reuseing the information of the old large itemsets. Partition algorithms that is suggested in this study scans an incremental database in view of the fact that it is difficult to find the new set of large itemset in the whole updated database after an incremental database is added to the original database. This method of generating large itemsets is different from that of FUP(Fast Update) and KDP(Kim Dong Pil)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.