There has been many research efforts to overcome the problems of speech recognition in noisy conditions. Among the noise-robust speech recognition methods, model-based adaptation approaches have been shown quite effective. Particularly, the PMC (parallel model combination) method is very popular and has been shown to give considerably improved recognition results compared with the conventional methods. In this paper, we experimented with the VTS (vector Taylor series) algorithm which is also based on the model parameter transformation but has not attracted much interests of the researchers in this area. To verify the effectiveness of it, we employed the algorithm in the continuous density HMM (Hidden Markov Model). We compared the performance of the VTS algorithm with the PMC method and could see that the it gave better results than the PMC method.
This paper presents an on-line scheme for parameter estimation of continuous-time systems, based on the model adjustment technique and the genetic algorithm technique. To deal with the initialisation and unmeasurable signal problems in on-line parameter estimation of continuous-time systems, a discrete-time model is obtained for the linear differential equation model and approximations of unmeasurable states with the observable output and its time-delayed values are obtained for the nonlinear state space model. Noisy observations may affect these approximation processes and degrade the estimation performance. A digital prefilter is therefore incorporated to avoid direct approximations of system derivatives from possible noisy observations. The parameters of both the model and the designed filter are adjusted on-line by a genetic algorithm, A set of simulation works for linear and nonlinear systems is carried out to demonstrate the effectiveness of the proposed method.
This paper presents collision avoidance using model predictive control algorithm. A model predictive control algorithm determines lateral tire force and yaw moment and steering angle input and differential braking input is determined from lateral tire force and yaw moment. A constraint for model predictive control is designed for obstacle avoidance. A objective function is designed to minimize lateral tire force and yaw moment input and to follow changed lane after collision avoidance. The performance of proposed algorithm has been investigated via computer simulation conducted to vehicle dynamic software CARSIM and Matlab/Simulink.
In recent years there has been a rise in the use and interest of the flipped learning as a teaching and learning paradigm. The flipped learning model includes any use of Internet technology to enrich the learning in a classroom, so that a professor can spend more time interacting with students instead of lecturing. In the flipped model, students viewed video lectures online outside of class time. Students then performed two kinds of assignments, a teamwork assignment and an individual work assignment, through the class time. In this paper, we propose a flipped educational model for a college class. This experimental research compares class of college algorithm using the flipped classroom methods and the traditional lecture-homework structure and its effect on student achievement. The result data of mid-term exam and final exam were analyzed and compared with previous year data. The findings of this research show that there was not a significant difference in the scores of student between two lecturing methods. The survey result and lecture evaluation by students show that students are in favor of the flipped learning.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권2호
/
pp.405-423
/
2022
The distance vector-hop (DV-Hop) is one of the emblematic algorithms that use node connectivity for locating, which often accompanies by a large positioning error. To reduce positioning error, the bio-inspired algorithm and weight optimization model are introduced to address positioning. Most scholars argue that the weight value decreases as the hop counts increases. However, this point of view ignores the intrinsic relationship between the error and weight. To address this issue, this paper constructs the relationship model between error and hop counts based on actual communication characteristics of sensor nodes in wireless sensor network. Additionally, we prove that the error converges to 1/6CR when the hop count increase and tendency to infinity. Finally, this paper presents a modified error-oriented weight positioning model, and implements it with genetic algorithm. The experimental results demonstrate excellent robustness and error removal.
전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
/
pp.346-351
/
1998
In design of a digital current controller for a 3-phase (3 ) voltage-source (VS) PWM converter, its conventional model, i.e., stationary or synchronous reference frame model, is used in obtaining its discretized version. It introduces, however, inherent errors since the following practical problems are not taken into consideration: the characteristics of the space vector-based pulse-width modulation (SVPWM) and the time delays in the process of sampling and computation. In this paper, the new hybrid reference frame model of the 3 VS PWM converter is proposed considering these problems. In addition, the direct digital current controller based on this model is designed without any prediction or extrapolation algorithm to compensate the time delay. So the control algorithm is made very simple. It represents no steady-state error in input current control and has the optimized transient responses. The validity of the proposed algorithm is proved by the computer simulation and experimental results.
어휘 인식 시스템은 학습 모델을 구성하여 인식하므로 구성되어진 모델에서 벗어난 어휘의 입력과 유사한 어휘의 입력은 인식하지 못하거나 유사한 어휘로 인식되어 인식률 저하가 나타난다. 이런 경우 인식 모델을 확장할 수 있도록 재구성하거나 인식 모델 구성 시 확장성을 반영하므로 해결할 수 있다. 본 논문에서는 모델 구성 시 확장성을 반영할 수 있는 모수 추정을 위한 베이시안 기법을 사용하여 바타차랴 알고리즘 음성 인식 학습 모델 구성 방법을 융합하여 제안하였다. 음소가 갖는 특징을 기반으로 학습 데이터의 음소에 모수 추정을 위한 베이시안 기법을 이용하였고 유사한 학습 모델은 바타챠랴 알고리즘을 이용하여 정확한 학습 모델로 인식하도록 하였다. 바타챠랴 알고리즘 인식 모델을 구성하여 인식 성능을 평가하였다. 본 논문에서 제안한 시스템을 적용한 결과 어휘 인식률에서 97.5%의 인식률과 1.2초의 학습 시간을 나타내었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권5호
/
pp.1963-1978
/
2015
With the advancement of mobile web environments, identification and analysis of the user behavior play a significant role and remains a challenging task to implement with variations observed in the model. This paper presents an efficient method for mining optimized user behavior prediction model using genetic algorithm on mobile web structure. The framework of optimized user behavior prediction model integrates the temporary and permanent register information and is stored immediately in the form of integrated logs which have higher precision and minimize the time for determining user behavior. Then by applying the temporal characteristics, suitable time interval table is obtained by segmenting the logs. The suitable time interval table that split the huge data logs is obtained using genetic algorithm. Existing cluster based temporal mobile sequential arrangement provide efficiency without bringing down the accuracy but compromise precision during the prediction of user behavior. To efficiently discover the mobile users' behavior, prediction model is associated with region and requested services, a method called optimized user behavior Prediction Model using Genetic Algorithm (PM-GA) on mobile web structure is introduced. This paper also provides a technique called MAA during the increase in the number of models related to the region and requested services are observed. Based on our analysis, we content that PM-GA provides improved performance in terms of precision, number of mobile models generated, execution time and increasing the prediction accuracy. Experiments are conducted with different parameter on real dataset in mobile web environment. Analytical and empirical result offers an efficient and effective mining and prediction of user behavior prediction model on mobile web structure.
Evapotranspiration (ET) is an important component of hydrological processes. Accurate estimates of ET variation are of vital importance for natural hazard adaptation and water resource management. This study first developed a soil water index (SWI)-based Priestley-Taylor algorithm (SWI-PT) based on the enhanced vegetation index (EVI), SWI, net radiation, and temperature. The algorithm was then compared with a modified satellite-based Priestley-Taylor ET model (MS-PT). After examining the performance of the two models at 10 flux tower sites in different land cover types over East Asia and Australia, the daily estimates from the SWI-PT model were closer to observations than those of the MS-PT model in each land cover type. The average correlation coefficient of the SWI-PT model was 0.81, compared with 0.66 in the original MS-PT model. The average value of the root mean square error decreased from $36.46W/m^2$ to $23.37W/m^2$ in the SWI-PT model, which used different variables of soil moisture and vegetation indices to capture soil evaporation and vegetative transpiration, respectively. By using the EVI and SWI, uncertainties involved in optimizing vegetation and water constraints were reduced. The estimated ET from the MS-PT model was most sensitive (to the normalized difference vegetation index (NDVI) in forests) to net radiation ($R_n$) in grassland and cropland. The estimated ET from the SWI-PT model was most sensitive to $R_n$, followed by SWI, air temperature ($T_a$), and the EVI in each land cover type. Overall, the results showed that the MS-PT model estimates of ET in forest and cropland were weak. By replacing the fraction of soil moisture ($f_{sm}$) with the SWI and the NDVI with the EVI, the newly developed SWI-PT model captured soil evaporation and vegetation transpiration more accurately than the MS-PT model.
This paper propose the inference mechanism for handling linear polynomial constraints called consistency checking algorithm based on the feasibility checking algorithm borrowed from linear pro-gramming. in contrast with other approaches proposed algorithm can efficiently and coherented by linear polynomial forms. The developed algorithm is successfully applied to the symbolic simulation that offers a convenient means to conduct multiple simultaneous exploration of model behaviors.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.