연속파 레이다는 카메라나 라이다와 같은 센서에 비해서 안정성과 정확성이 보장된다는 장점이 있다. 또한 이진 신경망은 다른 딥러닝 기술에 비해서 메모리 사용량과 연산 복잡도를 크게 줄일 수 있는 특징이 있다. 따라서 본 논문에서는 연속파 레이다와 이진 신경망 기반 사람 식별 및 동작 분류 시스템을 제안한다. 연속파 레이다 센서를 통해 수신된 신호를 단시간 푸리에 변환함으로써 스펙트로그램을 생성한다. 이 스펙트로그램을 기반으로 레이다를 향해 사람이 다가오는지 감지하는 알고리즘을 제안한다. 더불어, 최적화된 이진 신경망 모델을 설계하여 사람 식별 90.0%, 동작 분류 98.3%의 우수한 정확도를 지원할 수 있음을 확인하였다. 이진 신경망 연산을 가속하기 위해 FPGA (field programmable gate array)를 이용하여 이진 신경망 연산에 대한 하드웨어 가속기를 설계하였다. 해당 가속기는 1,030개의 로직, 836개의 레지스터, 334.906 Kbit의 블록 메모리를 사용하여 구현되었고, 추론에서 결과 전송까지 총 연산 시간이 6 ms로 실시간 동작이 가능함을 확인하였다.
학생들의 취업을 위한 면접 발표와 회사에서의 프로젝트 결과 발표 등과 같은 형식적인 발표 태도가 개선되려면 동료나 교수자의 관찰에 의한 방법 이외에 자동화된 방법은 드물다. 기존 연구에 따르면, 발표자의 안정적인 발화와 시선 처리가 발표에서의 전달력에 영향을 미친다고 한다. 또한, 본인 발표에 대한 적절한 피드백이 발표자의 발표 역량을 늘이는 효과가 있다는 연구도 있다. 본 연구에서는 이와 같은 교정의 긍정적 측면을 고려하여 대학생들의 잘못된 발표 습관과 태도를 동영상의 안면 분석을 통해 지능적으로 교정해 주는 프로그램을 개발하고 성능을 분석하였다. 개발하는 프로그램은 웹 기반으로 군말 사용 여부를 확인하고 안면 인식과 발표 내용 텍스트화를 통해 개발되었다. 이를 위해 군말 분류 인공지능 모델을 개발하였고, 동영상 객체 추출 후, 좌표에 기반으로 얼굴 특징점을 인식하였다. 이후 4,000개 안면 데이터를 이용해 Teachable Machine에서 안면 인식한 경우와 본 연구의 알고리즘 성능을 비교·분석하였다. 프로그램을 이용해 발표 태도를 자기스스로 교정하여 발표자들에게 도움을 준다.
전 세계적인 기후변화로 재해발생빈도가 증가하고 있으며, 국내에서도 이례적인 폭우 및 장마현상이 발생되고 있다. 이러한 기상이변현상은 가뭄, 홍수 등으로 이어져 2차피해를 유발할 수 있으므로 주기적인 모니터링과 신속한 탐지가 중요하다. 수체탐지를 위하여 광학영상을 활용한 연구가 지속적으로 이루어지고 있으나, 폭우를 동반하여 발생하는 홍수를 탐지하기 위해서는 구름의 영향으로 탐지하기 어렵다는 한계를 대변하기 위해 전천후 주야에 관계없이 관측가능한 합성개구레이더(synthetic aperture radar, SAR)를 활용한 연구가 필요하다. 본 연구에서는 개방데이터로서 24시간 이내에 수집 가능한 Sentinel-1 SAR 영상을 활용하여 최근 다양한 분야에서 활용되고 있는 딥러닝 알고리즘인 UNet을 적용하였다. 선행연구에서 SAR영상과 딥러닝 알고리즘을 이용하여 수체탐지 연구가 진행되고 있지만, 국내를 대상으로 소수의 연구만이 진행되었다. 따라서 SAR 영상의 딥러닝 적용가능성을 파악해보고자 UNet과 기존의 알고리즘인 임계값(thresholding) 방법을 비교하였으며, 5가지 지수와 Sentinel-2 normalized difference water index (NDWI)로 평가하였다. Intersect of union (IoU)로 정확도를 평가해 본 결과 UNet은 0.894, 임계값 방법은 0.699로 UNet의 정확도가 높은 것을 확인할 수 있었다. 본 연구를 통해 딥러닝 기반 SAR영상의 적용가능성을 확인할 수 있었으며, 고해상도의 SAR영상과 딥러닝 알고리즘을 적용한다면, 국내를 대상으로 주기적이고 정확한 수체의 변화탐지가 가능할 것이라 기대된다.
최근 코로나 19 팬더믹 이후 원격근무의 확대와 더불어 랜섬웨어 팬더믹이 심화하고 있다. 현재 안티바이러스 백신 업체들이 랜섬웨어에 대응하고자 노력하고 있지만, 기존의 파일 시그니처 기반 정적 분석은 패킹의 다양화, 난독화, 변종 혹은 신종 랜섬웨어의 등장 앞에 무력화될 수 있다. 이러한 랜섬웨어 탐지를 위한 다양한 연구가 진행되고 있으며, 시그니처 기반 정적 분석의 탐지 방법과 행위기반의 동적 분석을 이용한 탐지 연구가 현재 주된 연구유형이라고 볼 수 있다. 본 논문에서는 단일 분석만을 이용하여 탐지모델에 적용하는 것이 아닌 ".text Section" Opcode와 실제 사용하는 Native API의 빈도수를 추출하고 K-means Clustering 알고리즘, 코사인 유사도, 피어슨 상관계수를 이용하여 선정한 특징정보들 사이의 연관성을 분석하였다. 또한, 타 악성코드 유형 중 웜과 Cerber형 랜섬웨어를 분류, 탐지하는 실험을 통해, 선정한 특징정보가 특정 랜섬웨어(Cerber)를 탐지하는 데 특화된 정보임을 검증하였다. 위와 같은 검증을 통해 최종 선정된 특징정보들을 결합하여 기계학습에 적용하여, 최적화 이후 정확도 93.3% 등의 탐지율을 나타내었다.
본 논문에서는 패션 분야의 비정형 데이터 검색을 위한 패션 아이템별 세부 컨포넌트 이미지 분류 알고리즘을 제안한다. 코로나-19 환경으로 인하여 최근 AI 기반 쇼핑몰이 증가하는 추세이다. 하지만 기존의 키워드 검색과 사용자 서핑 행위 기반 개인 맞춤형 스타일 추천으로는 정확한 비정형 데이터 검색에는 한계가 있다. 본 연구는 다양한 온라인 쇼핑 사이트에서 크롤링한 이미지를 사용하여 Mask R-CNN을 활용한 전처리를 진행한 후, CNN을 통해 패션 아이템별 컴포넌트에 대한 분류를 진행하였다. 셔츠의 카라 및 패턴과 청바지의 핏, 워싱 및 컬러에 대한 분류를 진행하였으며, 다양한 전이학습 모델을 비교 분석한 후 가장 높은 정확도가 나온 Densenet121모델을 사용하여 셔츠의 카라는 93.28%, 셔츠의 패턴은 98.10%의 정확도를 도달하였으며, 청바지의 핏은 Notched, Spread, Straight 3가지의 클래스의 경우 91.73%, Regular 핏을 추가한 4가지의 클래스의 경우 81.59%, 청바지의 색상은 93.91%, 청바지의 Washing은 91.20%, 청바지의 Demgae는 92.96%의 정확도를 도출하였다.
본 연구에서는 패키징 인쇄를 위한 병렬 오프셋 인쇄 공정의 스케줄링 문제를 다루었다. 문제에 대해 두 부분으로 구분하여 접근하였고, 각각 할당 문제와 차량 경로 문제를 적용하여 수리적으로 모형화 하였다. 스케줄링 모형의 현장 적용성은 실험을 통해 검토하였다. 실제 데이터로 구성된 작은 규모의 문제에서는 수리모형으로도 실용적인 시간 내에 최적해를 도출할 수 있었고 이와 비교하여 메타 휴리스틱의 성능을 확인하였다. 기업이 보유한 데이터를 바탕으로 문제 규모를 확장한 실험에서는, 수리모형의 최적해와 비교하여 메타 휴리스틱이 해의 품질을 보장하면서 시간적 효율성을 확보할 수 있었다. 본 연구는 수작업 위주의 기존 방식은 주체(작업자)에 따라 스케줄링의 결과에 불확실성이 존재하는 문제에 주목하였다. 이러한 불확실성은 전체 생산 비용의 증가를 가져오기 때문에 이를 개선할 수 있도록 실용적인 시간 내에 일관된 결과를 제공하는 스케줄링 모형을 제시하였다. 제시한 모형은 단일 라인과 병렬 라인 모두에 적용되어 작업자의 경험에 의존하던 기존의 방식을 개선하는데 도움이 될 것으로 판단되며, 시간 함수의 정의를 통해 다른 요인들을 반영하는 연구로의 확장이 가능하다는 의의를 갖는다. 향후 주문의 납기, 복수의 라인에서 동일 주문 인쇄, 동일하지 않은 라인의 인쇄 용량, 조색 난이도 등을 고려하는 연구로의 확장을 통해 패키징 인쇄 분야의 스마트 생산 시스템 도입에 기여할 수 있을 것으로 기대된다.
우수한 역학적 성능을 가진 생물체의 구조를 모방하여 고성능의 복합재료를 개발하려는 노력이 최근 활발히 이뤄지고 있다. 진주층 구조는 구성재료 대비 월등히 높은 파괴인성을 지닌다는 점에서 촉망받는 자연 모사 구조 중 하나이다. 하지만, 진주층 모사 구조의 형상이 변형될 때 구조의 충격성능이 어떻게 달라지는지에 관한 연구는 아직 충분히 진행되지 않았다. 본 연구에서는 무작위로 변형된 진주층 모사 복합재의 수치모델을 개발하고 충격성능을 분석하였다. 먼저, 균일한 진주층 모사 패턴에서 플레이트 판의 평면 크기를 무작위로 변형하는 알고리즘을 개발하고 이를 활용하여 불균일한 진주층 패턴 모사 구조를 모델링하였다. 그 후, 낙하충격 시뮬레이션을 수행하고 해당 모델의 충격거동을 에너지 흡수율과 본 미세스 응력 분포, 충격력-시간 그래프를 활용하여 평가하였다. 수치해석결과를 바탕으로, 충돌 범위 주변 플레이트 판의 기하학적 형상이 불균일할수록 진주층 모사 구조의 내충격성이 저하됨을 입증하였다. 이러한 진주층 모사 형상에 대한 심층적인 이해는 진주층 모사 구조의 최적설계를 수립하는 데 효율적으로 활용될 수 있을 것으로 기대된다.
구조물을 안전하게 관리하기 위해서는 우선적으로 건전한 유지가 전제되어야 한다. 이 같은 구조물의 건전성을 결정하는 요인 중에서 가장 대표적인 예로는 균열을 들 수 있다. 여러 가지 원인에 의해 발생하는 균열은 다양한 종류와 형태로 구조물에 손상을 입힌다. 무엇보다 이러한 균열이 방치될 경우 위험도가 증가하여 안전사고로 이어질 수 있다. 이러한 문제점을 경감하기 위하여 최근 들어 딥러닝과 컴퓨터 비전 기술을 활용하여 손상을 점검하는 방법들이 소개되고 있다. 이 같은 방법들은 대체로 충분한 양의 학습 데이터가 필요한 것이 사실이다. 하지만, 학습을 위한 영상 데이터의 충분한 확보가 어렵다는 점은 딥러닝 균열 탐지 알고리즘의 성능에 부정적인 영향을 미친다. 따라서 본 논문에서는 이에 대한 문제의식을 바탕으로 영상 변환 기법을 활용하여 균열 영상 데이터를 증강하는 방법을 제시했다. 이는 아스팔트 균열 영상을 콘크리트 균열 영상으로 변환하거나 혹은 이와 반대로 콘크리트 균열 영상을 아스팔트 균열 영상으로 변환하여 딥러닝 신경망 모델을 학습하기 위한 영상 데이터를 확보하는 방법이다. 이를 통해 학습 데이터의 다양성을 향상시켜 강건한 균열 탐지 알고리즘 개발에 기여할 수 있기를 기대한다.
신용정보법에 따라 신용정보 주체의 관계별 고객 정보 보호를 위해 금융거래 효과가 끝난 기간에 따라 2단계로 나눠 파기 및 분리보관하고 있다. 하지만, 금융거래 효과가 종료된 고객의 개인신용정보 파기는 금융 상품 및 거래의 성격에 따라 거래가 종료되었다고 일괄적으로 파기할 수 없는 것이 한계이다. 이를 위해 IT 업무 담당자는 사전에 거래 유형별 업무 연관관계를 조사하여 파기 대상과 순서에 맞게 전산 프로그램을 개발하고 있다. 이 과정에서 테이블 간의 상위 연관관계 식별이 불명확한 경우, IT 업무 담당자의 주관적 판단에 의존되므로 개인신용정보가 파기되지 못하거나 파기하지 말아야 하는 정보까지 파기되는 컴플라이언스 이슈가 발생한다. 따라서, 본 논문에서는 전산 프로그램에서 실행하는 SQL을 기반으로 참조하는 테이블을 식별하고, 테이블의 기본키 정보로 테이블 간의 상위 연관관계 분석하고, 시각화하여 객관적으로 파기 대상 범위를 선정하기 위한 모델과 알고리즘을 제시하고 구현하였다.
본 연구는 최근 이동권 개선을 위해 교통약자들을 중심으로 이용되고 있는 전동 이동 보조기기의 안전 경로를 제공하는 서비스를 개발하고 평가하였다. 부산광역시에 거주하는 교통약자들과 관련 기관 종사자(부산광역시 내 장애인 자립 생활센터, 장애인 협회 정회원, 전동 이동 보조기기 수리기사, 활동 보조사)들과의 설문을 통해 전동 이동 보조기기의 이동에 영향을 미치는 13종의 요인을 도출하였다. 각각의 요인들에 안전성 점수를 부여하고 현장에서 수집된 데이터로 객체 인식 AI 모델을 학습시켜 해당 요인들을 판별한 후, 최적경로 탐색 알고리즘을 통해 전동 이동 보조기기 경로 안내 서비스를 개발하였다. 동일한 출도착 경로를 대상으로 T-map에서 제공하는 일반 경로와 본 연구의 추천 경로를 비교한 결과, 일반 경로에서는 전동 이동 보조기기의 주행에 방해가 되거나 승차감을 불편하게 하는 장애물이 많았고 가파른 경사로 인해 이동이 불편했지만, 본 연구의 추천 경로에서는 상대적으로 장애물이 적었고 경사도 완만하여 전동 이동 보조기기의 주행에 무리가 없었다. 향후 연구에서는 전동 이동 보조기기 이용자의 실시간 위치를 기반으로 경로 안내 서비스를 구현하고 다수의 이용자를 대상으로 현장 실증테스트를 진행하여 사회적 수용성 평가 및 검증을 수행할 필요가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.