• Title/Summary/Keyword: Algorithm Model

Search Result 13,015, Processing Time 0.041 seconds

Improvement of Optimal Bus Headway for Intermodal Transfer Station (교통수단간 연계를 위한 최적 버스 배차간격 조정 알고리즘 개발)

  • Ryu, Byoungyong;Yang, Seungtae;Bae, Sanghoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.17-23
    • /
    • 2009
  • Due to the rapid increase of vehicles on the street, Korean society is facing worsening traffic congestions and air pollutions. Also, the oil price pickup has led to increasing need for the use of public transportation. In particular, transfering among public transportation may be a main factor for riders who are commuting for a long distance journey. In order to ensure such connectivity, transfer stations have been actively built in Korea. However, it would be necessary to shift those vehicles, from cars to public transportations by enhancing the users' satisfaction with public transportation through strategies for minimizing the users' waiting cost by building an efficient connective system between transportation modes as well as the preparation of aforementioned transfer stations. Therefore, this study aimed to develop an algorithm for minimizing transferring passengers' waiting costs based on service intervals of linked buses within the transfer facilities. In order to adjust the service interval, we calculated the total costs, involving the wait cost of transfer passengers and bus operation costs, and produced an allocation interval, that would minimize the costs. We selected a KTX departing from Seoul station, and a No. 6014 bus route in Gwangmyeong city where it starts from the Gwangmyeong station in order to for verifying the model. Then, the transfer passengers' total waitting cost was reduced equivalent to the maximum of 212 minutes, and it revealed that the model performed very effectively.

Development of Deep Learning Based Ensemble Land Cover Segmentation Algorithm Using Drone Aerial Images (드론 항공영상을 이용한 딥러닝 기반 앙상블 토지 피복 분할 알고리즘 개발)

  • Hae-Gwang Park;Seung-Ki Baek;Seung Hyun Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.71-80
    • /
    • 2024
  • In this study, a proposed ensemble learning technique aims to enhance the semantic segmentation performance of images captured by Unmanned Aerial Vehicles (UAVs). With the increasing use of UAVs in fields such as urban planning, there has been active development of techniques utilizing deep learning segmentation methods for land cover segmentation. The study suggests a method that utilizes prominent segmentation models, namely U-Net, DeepLabV3, and Fully Convolutional Network (FCN), to improve segmentation prediction performance. The proposed approach integrates training loss, validation accuracy, and class score of the three segmentation models to enhance overall prediction performance. The method was applied and evaluated on a land cover segmentation problem involving seven classes: buildings,roads, parking lots, fields, trees, empty spaces, and areas with unspecified labels, using images captured by UAVs. The performance of the ensemble model was evaluated by mean Intersection over Union (mIoU), and the results of comparing the proposed ensemble model with the three existing segmentation methods showed that mIoU performance was improved. Consequently, the study confirms that the proposed technique can enhance the performance of semantic segmentation models.

Soil Moisture Estimation Using KOMPSAT-3 and KOMPSAT-5 SAR Images and Its Validation: A Case Study of Western Area in Jeju Island (KOMPSAT-3와 KOMPSAT-5 SAR 영상을 이용한 토양수분 산정과 결과 검증: 제주 서부지역 사례 연구)

  • Jihyun Lee;Hayoung Lee;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1185-1193
    • /
    • 2023
  • The increasing interest in soil moisture data from satellite imagery for applications in hydrology, meteorology, and agriculture has led to the development of methods to produce variable-resolution soil moisture maps. Research on accurate soil moisture estimation using satellite imagery is essential for remote sensing applications. The purpose of this study is to generate a soil moisture estimation map for a test area using KOMPSAT-3/3A and KOMPSAT-5 SAR imagery and to quantitatively compare the results with soil moisture data from the Soil Moisture Active Passive (SMAP) mission provided by NASA, with a focus on accuracy validation. In addition, the Korean Environmental Geographic Information Service (EGIS) land cover map was used to determine soil moisture, especially in agricultural and forested regions. The selected test area for this study is the western part of Jeju, South Korea, where input data were available for the soil moisture estimation algorithm based on the Water Cloud Model (WCM). Synthetic Aperture Radar (SAR) imagery from KOMPSAT-5 HV and Sentinel-1 VV were used for soil moisture estimation, while vegetation indices were calculated from the surface reflectance of KOMPSAT-3 imagery. Comparison of the derived soil moisture results with SMAP (L-3) and SMAP (L-4) data by differencing showed a mean difference of 4.13±3.60 p% and 14.24±2.10 p%, respectively, indicating a level of agreement. This research suggests the potential for producing highly accurate and precise soil moisture maps using future South Korean satellite imagery and publicly available data sources, as demonstrated in this study.

A Study on the Artificial Intelligence-Based Soybean Growth Analysis Method (인공지능 기반 콩 생장분석 방법 연구)

  • Moon-Seok Jeon;Yeongtae Kim;Yuseok Jeong;Hyojun Bae;Chaewon Lee;Song Lim Kim;Inchan Choi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.1-14
    • /
    • 2023
  • Soybeans are one of the world's top five staple crops and a major source of plant-based protein. Due to their susceptibility to climate change, which can significantly impact grain production, the National Agricultural Science Institute is conducting research on crop phenotypes through growth analysis of various soybean varieties. While the process of capturing growth progression photos of soybeans is automated, the verification, recording, and analysis of growth stages are currently done manually. In this paper, we designed and trained a YOLOv5s model to detect soybean leaf objects from image data of soybean plants and a Convolution Neural Network (CNN) model to judgement the unfolding status of the detected soybean leaves. We combined these two models and implemented an algorithm that distinguishes layers based on the coordinates of detected soybean leaves. As a result, we developed a program that takes time-series data of soybeans as input and performs growth analysis. The program can accurately determine the growth stages of soybeans up to the second or third compound leaves.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

Speaker verification with ECAPA-TDNN trained on new dataset combined with Voxceleb and Korean (Voxceleb과 한국어를 결합한 새로운 데이터셋으로 학습된 ECAPA-TDNN을 활용한 화자 검증)

  • Keumjae Yoon;Soyoung Park
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.209-224
    • /
    • 2024
  • Speaker verification is becoming popular as a method of non-face-to-face identity authentication. It involves determining whether two voice data belong to the same speaker. In cases where the criminal's voice remains at the crime scene, it is vital to establish a speaker verification system that can accurately compare the two voice evidence. In this study, to achieve this, a new speaker verification system was built using a deep learning model for Korean language. High-dimensional voice data with a high variability like background noise made it necessary to use deep learning-based methods for speaker matching. To construct the matching algorithm, the ECAPA-TDNN model, known as the most famous deep learning system for speaker verification, was selected. A large dataset of the voice data, Voxceleb, collected from people of various nationalities without Korean. To study the appropriate form of datasets necessary for learning the Korean language, experiments were carried out to find out how Korean voice data affects the matching performance. The results showed that when comparing models learned only with Voxceleb and models learned with datasets combining Voxceleb and Korean datasets to maximize language and speaker diversity, the performance of learning data, including Korean, is improved for all test sets.

Optimal Supply Calculation of Electric Vehicle Slow Chargers Considering Charging Demand Based on Driving Distance (주행거리 기반 충전 수요를 고려한 전기자동차 완속 충전기 최적 공급량 산출)

  • Gimin Roh;Sujae Kim;Sangho Choo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.142-156
    • /
    • 2024
  • The transition to electric vehicles is a crucial step toward achieving carbon neutrality in the transportation sector. Adequate charging infrastructure at residential locations is essential. In South Korea, the predominant form of housing is multifamily dwellings, necessitating the provision of public charging stations for numerous residents. Although the government mandates the availability of charging facilities and designated parking areas for electric vehicles, it bases the supply of charging stations solely on the number of parking spaces. Slow chargers, mainly 3.5kW charging outlets and 7kW slow chargers, are commonly used. While the former is advantageous for installation and use, its slower charging speed necessitates the coexistence of both types of chargers. This study presents an optimization model that allocates chargers capable of meeting charging demands based on daily driving distances. Furthermore, using the metaheuristic algorithm Tabu Search, this model satisfies the optimization requirements and minimizes the costs associated with charger supply and usage. To conduct a case study, data from personal travel surveys were used to estimate the driving distances, and a hypothetical charging scenario and environment were set up to determine the optimal supply of 22 units of 3.5kW charging outlets for the charging demands of 100 BEVs.

Building Dataset of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Junhyuk Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.21-30
    • /
    • 2024
  • In this paper, we propose a method to build a sample dataset of the features of eight sensor-only facilities built as infrastructure for autonomous cooperative driving. The feature extracted from point cloud data acquired by LiDAR and build them into the sample dataset for recognizing the facilities. In order to build the dataset, eight sensor-only facilities with high-brightness reflector sheets and a sensor acquisition system were developed. To extract the features of facilities located within a certain measurement distance from the acquired point cloud data, a cylindrical projection method was applied to the extracted points after applying DBSCAN method for points and then a modified OTSU method for reflected intensity. Coordinates of 3D points, projected coordinates of 2D, and reflection intensity were set as the features of the facility, and the dataset was built along with labels. In order to check the effectiveness of the facility dataset built based on LiDAR data, a common CNN model was selected and tested after training, showing an accuracy of about 90% or more, confirming the possibility of facility recognition. Through continuous experiments, we will improve the feature extraction algorithm for building the proposed dataset and improve its performance, and develop a dedicated model for recognizing sensor-only facilities for autonomous cooperative driving.

High-Frequency Bottom Loss Measured at Near-Normal Incidence Grazing Angle in Jinhae Bay (진해만에서 측정된 높은 수평입사각에서의 고주파 해저면 반사손실)

  • La, Hyoung-Sul;Park, Chi-Hyung;Cho, Sung-Ho;Choi, Jee-Woong;Na, Jung-Yul;Yoon, Kwan-Seob;Park, Kyung-ju;Park, Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.223-228
    • /
    • 2010
  • High-frequency bottom loss measurements for grazing angle of $82^{\circ}$ in frequency range 17-40 kHz were made in Jinhae bay in the southern part of Korea. Observations of bottom loss showed the strong variation as a function of frequency, which were compared to the predicted values using two-layered sediment reflection model. The geoacoustic parameters including sound speed, density and attenuation coefficient for the second sediment layer were predicted from the empirical relations with the mean grain size obtained from sediment core analysis. The geoacoustic parameters for the surficial sediment layer were inverted using Monte Carlo inversion algorithm. A sensitivity study for the geoacoustic parameters showed that the thickness of surficial sediment layer was most sensitive to the variation of the bottom loss.

LymphanaxTM Enhances Lymphangiogenesis in an Artificial Human Skin Model, Skin-lymph-on-a-chip (스킨-림프-칩 상에서 LymphanaxTM 의 림프 형성 촉진능)

  • Phil June Park;Minseop Kim;Sieun Choi;Hyun Soo Kim;Seok Chung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.2
    • /
    • pp.119-129
    • /
    • 2024
  • The cutaneous lymphatic system in humans plays a crucial role in draining interstitial fluid and activating the immune system. Environmental factors, such as ultraviolet light and natural aging, often affect structural changes of such lymphatic vessels, causing skin dysfunction. However, some limitations still exist because of no alternatives to animal testing. To better understand the skin lymphatic system, a biomimetic microfluidic platform, skin-lymph-on-a-chip, was fabricated to develop a novel in vitro skin lymphatic model of humans and to investigate the molecular and physiological changes involved in lymphangiogenesis, the formation of lymphatic vessels. Briefly, the platform involved co-culturing differentiated primary normal human epidermal keratinocytes (NHEKs) and dermal lymphatic endothelial cells (HDLECs) in vitro. Based on our system, LymphanaxTM, which is a condensed Panax ginseng root extract obtained through thermal conversion for 21 days, was applied to evaluate the lymphangiogenic effect, and the changes in molecular factors were analyzed using a deep-learning-based algorithm. LymphanaxTM promoted healthy lymphangiogenesis in skin-lymphon-a-chip and indirectly affected HDELCs as its components rarely penetrated differentiated NHEKs in the chip. Overall, this study provides a new perspective on LymphanaxTM and its effects using an innovative in vitro system.