• 제목/요약/키워드: Algorithm Design

검색결과 10,329건 처리시간 0.04초

채널 추정 알고리즘을 이용한 비동기식 IMT-2000 (W-CDMA) 시스템의 성능 분석 (Analysis of Asynchronous IMT-2000 (W-CDMA) Systems Using Channel Estimation Algorithm)

  • 김병기;나인학;전준수;김철성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(1)
    • /
    • pp.77-80
    • /
    • 2002
  • In this paper, we analyze a physical layer of W-CDMA .system and design a transmitter and receiver by using ADS (Advanced Design System). Also, we simulated a link level performance with different channel estimation algorithm in Jakes fading channel environment. For the channel estimator, we used the WMSA(Weighted Multi-Slot Averaging) algorithm, EGE(Equal Gain Estimation) algorithm and SSE(Symbol-to-Symbol Estimation) algorithm. This study will be useful in the analysis and design of W-CDMA system.

  • PDF

켄틸레버 옹벽의 최적 설계 (Optimum Design of Cantilever Retaining Wall)

  • 김종옥
    • 한국농공학회지
    • /
    • 제37권1호
    • /
    • pp.90-99
    • /
    • 1995
  • In this study, the algorithm for the optimum design of cantilever retaining wall was de veloped and solved using Modified Method of Feasible Directions(MMFD), Sequential Linear Programming(SLP) and Sequential Quadratic Programming(SQP). The algorithm was applied to the optimum design of 3-different height cantilever re tairing walls. It was shown that even though the starting points and optimization strategies are dif- ferent, the objective function and optimum design variables converge to within a close range, and consequently the reliability and efficiency of the underlying optimum design algorithm can be verified. It is expected that the optimum design algorithm developed in this study can be utilized efficiently for the optimum design of any scale cantilever retaining wall. Using optimum design method, cantilever retaining wall will be designed more economi- cally and reasonably than using traditional design method.

  • PDF

Hardware Accelerated Design on Bag of Words Classification Algorithm

  • Lee, Chang-yong;Lee, Ji-yong;Lee, Yong-hwan
    • Journal of Platform Technology
    • /
    • 제6권4호
    • /
    • pp.26-33
    • /
    • 2018
  • In this paper, we propose an image retrieval algorithm for real-time processing and design it as hardware. The proposed method is based on the classification of BoWs(Bag of Words) algorithm and proposes an image search algorithm using bit stream. K-fold cross validation is used for the verification of the algorithm. Data is classified into seven classes, each class has seven images and a total of 49 images are tested. The test has two kinds of accuracy measurement and speed measurement. The accuracy of the image classification was 86.2% for the BoWs algorithm and 83.7% the proposed hardware-accelerated software implementation algorithm, and the BoWs algorithm was 2.5% higher. The image retrieval processing speed of BoWs is 7.89s and our algorithm is 1.55s. Our algorithm is 5.09 times faster than BoWs algorithm. The algorithm is largely divided into software and hardware parts. In the software structure, C-language is used. The Scale Invariant Feature Transform algorithm is used to extract feature points that are invariant to size and rotation from the image. Bit streams are generated from the extracted feature point. In the hardware architecture, the proposed image retrieval algorithm is written in Verilog HDL and designed and verified by FPGA and Design Compiler. The generated bit streams are stored, the clustering step is performed, and a searcher image databases or an input image databases are generated and matched. Using the proposed algorithm, we can improve convenience and satisfaction of the user in terms of speed if we search using database matching method which represents each object.

이산 설계변수를 포함하고 있는 자동차용 휠 베어링 유닛의 설계방법 (Design Methodology of Automotive Wheel Bearing Unit with Discrete Design Variables)

  • 윤기찬;최동훈
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.122-130
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design, this study proposes a design method for determining design variables of an automotive wheel-bearing unit of double-row angular-contact ball bearing type by using a genetic algorithm. The desired performance of the wheel-bearing unit is to maximize system life while satisfying geometrical and operational constraints without enlarging mounting spae. The use of gradient-based optimization methods for the design of the unit is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding and dynamic mutation rate is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. A computer program is developed and applied to the design of a real wheel-bearing unit model to evaluate the proposed design method. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the system life of an optimally designed wheel-bearing unit is enhanced in comparison with that of the current design without any constraint violations.

  • PDF

향상된 유전알고리듬을 이용한 로터 베어링 시스템의 최적설계 (Optimum Design for Rotor-bearing System Using Advanced Genetic Algorithm)

  • 김영찬;최성필;양보석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.533-538
    • /
    • 2001
  • This paper describes a combinational method to compute the global and local solutions of optimization problems. The present hybrid algorithm uses both a genetic algorithm and a local concentrate search algorithm (e. g simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm but also supplies a more accurate solution. In addition, this algorithm can find the global and local optimum solutions. The present algorithm can be supplied to minimize the resonance response (Q factor) and to yield the critical speeds as far from the operating speed as possible. These factors play very important roles in designing a rotor-bearing system under the dynamic behavior constraint. In the present work, the shaft diameter, the bearing length, and clearance are used as the design variables.

  • PDF

GA와 SA 알고리듬의 조합을 이용한 최적의 BPCGH의 설계 (Design of optimal BPCGH using combination of GA and SA Algorithm)

  • 조창섭;김철수;김수중
    • 한국통신학회논문지
    • /
    • 제28권5C호
    • /
    • pp.468-475
    • /
    • 2003
  • 본 논문에서는 패턴생성을 위한 최적의 이진 위상 컴퓨터형성 홀로그램을 설계하기 위해 합성된 SA알고리듬 및 유전 알고리듬을 이용하였다. 제안된 방법의 탐색과정에서 sGA를 사용하여 BPCGH를 생성하고. 결과 홀로그램 패턴을 SA 알고리듬의 초기 랜덤 투과함수로 이용하여 최적의 BPCGH를 설계하였다. 컴퓨터 시뮬레이션에서 독립적으로 사용된 SA 알고리듬과 유전 알고리듬을 비교한 결과 제안한 알고리듬이 회절 효율이 향상된 것을 확인할 수 있었다.

강바닥판교의 개선된 다단계 최적설계 알고리즘 (An Improved Multi-level Optimization Algorithm for Orthotropic Steel Deck Bridges)

  • 조효남;이광민;최영민;김정호
    • 한국전산구조공학회논문집
    • /
    • 제16권3호
    • /
    • pp.237-250
    • /
    • 2003
  • 강바닥판교는 수 천개의 부재가 연결된 복잡한 구조물이기 때문에 설계와 해석이 난해하다는 단점을 가지고 있어 구조특성에 적합한 효율적인 최적화 알고리즘을 개발하는 것은 실용적인 최적화이론의 활용차원에서 매우 중요하다고 할 수 있다. 이에 본 연구에서는 강바닥판교의 최적설RP를 효과적으로 수행하기 위한 개선된 다단계 최적설계 알고리즘을 제안하였다. 강바닥판교의 구조적인 특성을 반영하면서 전체 시스템을 주형과 강바닥판으로 나누기 위해 다단계 최적설계 방법 중에 하나인 등위법 (Coordination Method)을 사용하였고, 효율적인 최적설계를 위한 처짐제약조건 소거기법, 구조해석의 효율성을 높이기 위한 자동미분기법이 사용되었으며, 활하중에 의한 응력은 기존연구에서 제안된 응력재해석 기법을 사용하였다. 강바닥판은 폐단면리브의 형식과 같은 이산형 설계변수와 바닥판의 두께 가로보의 치수와 같은 연속형 설계변수가 혼합되어 있는 형태로 구성되어 있다. 이에 본 연구에서는 강 바닥판의 최적화를 위해 수정된 유전자 알고리즘을 사용하였다. 수치예제를 사용하여 제안된 알고리즘의 효율성과 수렴성을 입증하였다.

초전도 전자석의 저장에너지 최대화를 위한 최적설계 (Design Optimization of Superconducting Magnet for Maximum Energy Storage)

  • 김창욱;이향범;박일한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.253-255
    • /
    • 1999
  • In this paper, a shape optimization algorithm of superconducting magnet using finite element method is presented. Since the superconductor loses its superconductivity over the critical magnetic field and critical current density, this material property should be taken into account in the design process. Trial and error approach of repeating the change of the design variables costs much time and it sometimes does not guarantee an optimal design. This paper presents a systematic and efficient design algorithm for the superconducting magnet. We employ the sensitivity analysis based on finite element formulation. As for optimization algorithm, the inequality constraint for the superconducting state is removed by modifying the objective function and the nonlinear equality constraint of constant volume is satisfied by the gradient projection method. This design algorithm is applied to an optimal design problem of a solenoid air-cored superconducting magnet that has a design objective of the maximum energy storage.

  • PDF

Optimum design of laterally-supported castellated beams using CBO algorithm

  • Kaveh, A.;Shokohi, F.
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.305-324
    • /
    • 2015
  • In this study, two common types of laterally supported castellated beams are considered as design problems: beams with hexagonal openings and beams with circular openings. The main goal of manufacturing these beams is to increase the moment of inertia and section modulus, which results in greater strength and rigidity. These types of open-web beams have found widespread use, primarily in buildings, because of great savings in materials and construction costs. Hence, the minimum cost is taken as the design objective function and the Colliding Bodies Optimization (CBO) method is utilized for obtaining the solution of the design problem. The design methods used in this study are consistent with BS5950 Part 1 and Part 3, and Euro Code 3. A number of design examples are considered to optimize by CBO algorithm. Comparison of the optimal solution of the CBO algorithm with those of the Enhanced Charged System Search (ECSS) method demonstrate the capability of CBO in solving the present type of design problem. It is also observed that optimization results obtained by the CBO algorithm for three design examples have less cost in comparison to the results of the ECSS algorithm. From the results obtained in this paper, it can be concluded that the use of beam with hexagonal opening requires smaller amount of steel material and it is superior to the cellular beam from the cost point of view.

다단 치차장치 설계 시스템 개발에 관한 연구(제 2보: 일반화된 신설계 알고리즘의 개발) (Development of a Design System for Multi-Stage Gear Drives (2nd Report: Development of a Generalized New Design Algorithm))

  • 정태형;배인호;박경진
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.192-199
    • /
    • 2000
  • The design of multi-stage gear drives is a time-consuming process because it includes more complicated problems, which are not considered in the design of single-stage gear drives. The designer has no determine the number of reduction stages and the gear ratios of each reduction stage. In addition, the design problems include not only dimensional design but also configuration design of gear drive elements. There is no definite rule or principle for these types of design problems. Thus the design practices largely depend on the sense and the experiences of the designer, and consequently result in undesirable design solution. A new and generalized design algorithm has been proposed to support the designer at the preliminary phase of the design of multi-stage gear drives. The proposed design algorithm automates the design process by integrating the dimensional design and the configuration design process. The algorithm consists of four steps. In the first step, the user determines the number of reduction stages. In the second step, gear ratios of every stage are chosen using the random search method. The values of the basic design parameters of a gear are chose in the third step by using the generate and test method. Then the values of the dimensions, such as pitch diameter, outer diameter and face width, are calculated for the configuration design in the next step. The strength and durability of each gear is guaranteed by the bending strength and the pitting resistance rating practices by using AGMA rating formulas. In the final step, the configuration design is carried out using simulated annealing algorithm. The positions of gears and shafts are determined to minimize the geometrical volume (size) of a gearbox while avoiding interferences between them. These steps are carried out iteratively until a desirable solution is acquired. The proposed design algorithm is applied to the preliminary design of four-stage gear drives in order to validate the availability. The design solution has considerably good results in both aspects of the dimensional and the configuration design.

  • PDF