• Title/Summary/Keyword: Algorithm Based

Search Result 27,992, Processing Time 0.063 seconds

Triage Accuracy of Pediatric Patients using the Korean Triage and Acuity Scale in Emergency Departments (한국형응급환자분류도구를 적용한 응급실에서 소아 환자의 중증도 분류 정확성)

  • Moon, Sun-Hee;Shim, Jae Lan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.626-634
    • /
    • 2018
  • This retrospective study investigates the accuracy of triage procedures for pediatric patients in emergency departments (EDs) using the Korean Triage and Acuity Scale (KTAS). The study includes 250 randomly selected initial nursing records and clinical outcomes of pediatric patients who visited one regional ED or a local ED from October 2016 to September 2017. The collected data were analyzed by a qualified expert to determine the true triage score. The accuracy of triage was defined as the agreement between the triage score of the emergency nurses (ENs) and the true triage score as determined by the expert. Based on expert comments, the cause of the triage error was analyzed and the KTAS score was compared with the discharge, length of stay (LOS), and medical cost. The results showed that the degree of agreement in the triage score between the experts and the ENs was excellent (weighted kappa=0.77). Among the causes of triage discordance, the most frequent was the incorrect application of vital signs to the KTAS algorithm criteria (n=13). Patients with high severity KTAS levels 1 and 2 were discharged less often (${\chi}=43.25$, p<0.001). There were significant differences in the length of stay (F=12.39, p<0.001) and cost (F=11.78, p<0.001) between KTAS scores when adjusting for age. The results of this study indicate that KTAS is highly accurate in EDs. Hence, the newly developed triage tool is becoming well established in Korea.

A Study on the Monitoring System of Growing Environment Department for Smart Farm (Smart 농업을 위한 근권환경부 모니터링 시스템 연구)

  • Jeong, Jin-Hyoung;Lim, Chang-Mok;Jo, Jae-Hyun;Kim, Ju-hee;Kim, Su-Hwan;Lee, Ki-Young;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.290-298
    • /
    • 2019
  • The proportion of farm households in the total population is decreasing every year. The aging of rural areas is expected to deepen. The aging of agriculture is continuing due to the aging of the aged population and the decline of the young population, and agricultural manpower shortage is emerging as a threat to agriculture and rural areas. The existing facility cultivation was concentrated on the production / yield per unit area. However, nowadays, not only production but also crop quality should be good so that the quality of crops must be improved because they can secure competitiveness in the market. Therefore, the government plans to increase the productivity by hi-techization of ICT infrastructure horticulture and to plan the dissemination of energy saving smart greenhouse. Therefore, it is necessary to develop a Smart Farm convergence service system based on a hybrid algorithm to enhance diversity and connectivity. Therefore, this study aims to develop smart farm convergence service system which collects data of growth environment of the rhizosphere environment of crops by wireless and monitor smartphone.

Development of a Coupled Eulerian-Lagrangian Finite Element Model for Dissimilar Friction Stir Welding (Coupled Eulerian-Lagrangian기법을 이용한 이종 마찰교반용접 해석모델 개발)

  • Lim, Jae-Yong;Lee, Jinho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.7-13
    • /
    • 2019
  • This study aims to develop a FE Model to simulate dissimilar friction stir welding and to address its potential for fundamental analysis and practical applications. The FE model is based on Coupled Eulerian-Lagrangian approach. Multiphysics systems are calculated using explicit time integration algorithm, and heat generations by friction and inelastic heat conversion as well as heat transfer through the bottom surface are included. Using the developed model, friction stir welding between an Al6061T6 plate and an AZ61 plate were simulated. Three simulations are carried out varying the welding parameters. The model is capable of predicting the temperature and plastic strain fields and the distribution of void. The simulation results showed that temperature was generally greater in Mg plates and that, as a rotation speed increase, not the maximum temperature of Mg plate increased, but did the temperature of Al plate. In addition, the model could predict flash defects, however, the prediction of void near the welding tool was not satisfactory. Since the model includes the complex physics closely occurring during FSW, the model possibly analyze a lot of phenomena hard to discovered by experiments. However, practical applications may be limited due to huge simulation time.

Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset (실생활 음향 데이터 기반 이중 CNN 구조를 특징으로 하는 음향 이벤트 인식 알고리즘)

  • Suh, Sangwon;Lim, Wootaek;Jeong, Youngho;Lee, Taejin;Kim, Hui Yong
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.855-865
    • /
    • 2018
  • Sound event detection is one of the research areas to model human auditory cognitive characteristics by recognizing events in an environment with multiple acoustic events and determining the onset and offset time for each event. DCASE, a research group on acoustic scene classification and sound event detection, is proceeding challenges to encourage participation of researchers and to activate sound event detection research. However, the size of the dataset provided by the DCASE Challenge is relatively small compared to ImageNet, which is a representative dataset for visual object recognition, and there are not many open sources for the acoustic dataset. In this study, the sound events that can occur in indoor and outdoor are collected on a larger scale and annotated for dataset construction. Furthermore, to improve the performance of the sound event detection task, we developed a dual CNN structured sound event detection system by adding a supplementary neural network to a convolutional neural network to determine the presence of sound events. Finally, we conducted a comparative experiment with both baseline systems of the DCASE 2016 and 2017.

Comparison of Co-registration Algorithms for TOPS SAR Image (TOPS 모드 SAR 자료의 정합기법 비교분석)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1143-1153
    • /
    • 2018
  • For TOPS InSAR processing, high-precision image co-registration is required. We propose an image co-registration method suitable for the TOPS mode by comparing the performance of cross correlation method, the geometric co-registration and the enhanced spectral diversity (ESD) matching algorithm based on the spectral diversity (SD) on the Sentinel-1 TOPS mode image. Using 23 pairs of interferometric pairs generated from 25 Sentinel-1 TOPS images, we applied the cross correlation (CC), geometric correction with only orbit information (GC1), geometric correction combined with iterative cross-correlation (GC2, GC3, GC4), and ESD iteration (ESD_GC, ESD_1, ESD_2). The mean of co-registration errors in azimuth direction by cross correlation and geometric matching are 0.0041 pixels and 0.0016 pixels, respectively. Although the ESD method shows the most accurate result with the error of less than 0.0005 pixels, the error of geometric co-registration is reduced to 0.001 pixels by repetition through additional cross correlation matching between the reference and resampled slave image. The ESD method is not applicable when the coherence of the burst overlap areas is low. Therefore, the geometric co-registration method through iterative processing is a suitable alternative for time series analysis using multiple SAR data or generating interferogram with long time intervals.

The Rated Self: Credit Rating and the Outsoursing of Human Judgment (평가된 자아: 신용평가와 도덕적, 경제적 가치 평가의 외주화)

  • Yi, Doogab
    • Journal of Science and Technology Studies
    • /
    • v.19 no.1
    • /
    • pp.91-135
    • /
    • 2019
  • As we live a life increasingly mediated by computers, we often outsource our critical judgments to artificial intelligence(AI)-based algorithms. Most of us have become quite dependent upon algorithms: computers are now recommending what we see, what we buy, and who we befriend with. What happens to our lives and identities when we use statistical models, algorithms, AI, to make a decision for us? This paper is a preliminary attempt to chronicle a historical trajectory of judging people's economic and moral worth, namely the history of credit-rating within the context of the history of capitalism. More importantly this paper will critically review the history of credit-rating from its earlier conception to the age of big data and algorithmic evaluation, in order to ask questions about what the political implications of outsourcing our judgments to computer models and artificial intelligence would be. Some of the questions I would like to ask in this paper are: by whom and for what purposes is the computer and artificial intelligence encroached into the area of judging people's economic and moral worth? In what ways does the evolution of capitalism constitute a new mode of judging people's financial and personal identity, namely the rated self? What happens in our self-conception and identity when we are increasingly classified, evaluated, and judged by computer models and artificial intelligence? This paper ends with a brief discussion on the political implications of the outsourcing of human judgment to artificial intelligence, and some of the analytic frameworks for further political actions.

A Study on the Designation of Scenic Sites Considering Visual Perception Intensity (시지각강도를 고려한 명승 구역설정에 관한 연구)

  • Ha, Tae-Il;Kim, Choong-Sik
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.1
    • /
    • pp.58-77
    • /
    • 2017
  • This study applied the index called Visual Perception Intensity (VPI) which quantitatively deals with landscape values and viewpoints to designate the cultural heritage areas in the Scenic Sites. The results of the study are as follows. First, a VPI selection index was presented for designating the cultural heritage areas in the Scenic Sites. The index was applied in consideration of the distance from the viewing point to the object and its incident angle. In addition, the process of the VPI analysis was implemented with GIS and the analysis algorithm was constructed. Second, the possibility of VPI was examined by comparing the simple frequency of the cumulative visibility with the results of the VPI. The VPI was analyzed to be more influenced by the incidence angle than the distance between the viewpoint and the object within a 4.74 km area. Third, a field survey was performed to investigate the effectiveness of the VPI classification. The survey was implemented based on the results of the investigation into the VPI to examine whether human visual perception was fully reflected. It was confirmed through the field survey that an area with high VPI was also an important area. Fourth, a plan for the cultural heritage area adjustment was constructed by applying the VPI to the areas already designated as Scenic Sites. As a result of classifying the VPI into three classes, it was found that the areas with the second class or higher were needed to be designated as cultural heritage areas and the areas with the third class as the Historical and Cultural Environments Preservation Area.

Design of Device Authentication Protocol Based on C-PBFT in a Smart Home Environment (스마트 홈 환경에서 C-PBFT 기반의 디바이스 인증 프로토콜 설계)

  • Kim, Jeong-Ho;Heo, Jae-Wook;Jun, Moon-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.550-558
    • /
    • 2019
  • As the scale of the Internet of Things (IoT) environment grows and develops day by day, the information collected and shared through IoT devices becomes increasingly diverse and more common. However, because IoT devices have limitations on computing power and a low power capacity due to their miniaturized size, it is difficult to apply security technologies like encryption and authentication that have been directly applied in the previous Internet environment, making the IoT vulnerable to security threats. Because of this weakness, important information that needs to be delivered safely and accurately is exposed to the threat of malicious exploitation, such as data forgery, data leakage, and infringement of personal information. In order to overcome this threat, various security studies are being actively conducted to compensate for the weaknesses in IoT environment devices. In particular, since various devices interact, and share and communicate information collected in the IoT environment, each device should be able to communicate with reliability. With regard to this, various studies have been carried out on techniques for device authentication. This study examines the limitations and problems of the authentication techniques that have been studied thus far, and proposes technologies that can certify IoT devices for safe communication between reliable devices in the Internet environment.

A Security Nonce Generation Algorithm Scheme Research for Improving Data Reliability and Anomaly Pattern Detection of Smart City Platform Data Management (스마트시티 플랫폼 데이터 운영의 이상패턴 탐지 및 데이터 신뢰성 향상을 위한 보안 난수 생성 알고리즘 방안 연구)

  • Lee, Jaekwan;Shin, Jinho;Joo, Yongjae;Noh, Jaekoo;Kim, Jae Do;Kim, Yongjoon;Jung, Namjoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.75-80
    • /
    • 2018
  • The smart city is developing an energy system efficiently through a common management of the city resource for the growth and a low carbon social. However, the smart city doesn't counter a verification effectively about a anomaly pattern detection when existing security technology (authentication, integrity, confidentiality) is used by fixed security key and key deodorization according to generated big data. This paper is proposed the "security nonce generation based on security nonce generation" for anomaly pattern detection of the adversary and a safety of the key is high through the key generation of the KDC (Key Distribution Center; KDC) for improvement. The proposed scheme distributes the generated security nonce and authentication keys to each facilities system by the KDC. This proposed scheme can be enhanced to the security by doing the external pattern detection and changed new security key through distributed security nonce with keys. Therefore, this paper can do improving the security and a responsibility of the smart city platform management data through the anomaly pattern detection and the safety of the keys.

Three Dimensional Measurement of Ideal Trajectory of Pedicle Screws of Subaxial Cervical Spine Using the Algorithm Could Be Applied for Robotic Screw Insertion

  • Huh, Jisoon;Hyun, Jae Hwan;Park, Hyeong Geon;Kwak, Ho-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.376-381
    • /
    • 2019
  • Objective : To define optimal method that calculate the safe direction of cervical pedicle screw placement using computed tomography (CT) image based three dimensional (3D) cortical shell model of human cervical spine. Methods : Cortical shell model of cervical spine from C3 to C6 was made after segmentation of in vivo CT image data of 44 volunteers. Three dimensional Cartesian coordinate of all points constituting surface of whole vertebra, bilateral pedicle and posterior wall were acquired. The ideal trajectory of pedicle screw insertion was defined as viewing direction at which the inner area of pedicle become largest when we see through the biconcave tubular pedicle. The ideal trajectory of 352 pedicles (eight pedicles for each of 44 subjects) were calculated using custom made program and were changed from global coordinate to local coordinate according to the three dimensional position of posterior wall of each vertebral body. The transverse and sagittal angle of trajectory were defined as the angle between ideal trajectory line and perpendicular line of posterior wall in the horizontal and sagittal plane. The averages and standard deviations of all measurements were calculated. Results : The average transverse angles were $50.60^{\circ}{\pm}6.22^{\circ}$ at C3, $51.42^{\circ}{\pm}7.44^{\circ}$ at C4, $47.79^{\circ}{\pm}7.61^{\circ}$ at C5, and $41.24^{\circ}{\pm}7.76^{\circ}$ at C6. The transverse angle becomes more steep from C3 to C6. The mean sagittal angles were $9.72^{\circ}{\pm}6.73^{\circ}$ downward at C3, $5.09^{\circ}{\pm}6.39^{\circ}$ downward at C4, $0.08^{\circ}{\pm}6.06^{\circ}$ downward at C5, and $1.67^{\circ}{\pm}6.06^{\circ}$ upward at C6. The sagittal angle changes from caudad to cephalad from C3 to C6. Conclusion : The absolute values of transverse and sagittal angle in our study were not same but the trend of changes were similar to previous studies. Because we know 3D address of all points constituting cortical shell of cervical vertebrae. we can easily reconstruct 3D model and manage it freely using computer program. More creative measurement of morphological characteristics could be carried out than direct inspection of raw bone. Furthermore this concept of measurement could be used for the computing program of automated robotic screw insertion.