• Title/Summary/Keyword: Alginate immobilization

Search Result 123, Processing Time 0.03 seconds

Development of the Calcium Alginate Bead Immobilized with $TiOSO_4$ for the Efficient Removal of Phosphorous (Phosphorous의 효율적인 제거를 위한 $TiOSO_4$ 고정화 Calcium Alginate Bead의 제조기법에 관한 연구)

  • Choi, Jae-Woo;Lee, Seung-Yeon;Chung, Seung-Gun;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.162-166
    • /
    • 2011
  • Phosphorous contaminated in the effluent from sewage treatment plants can cause the eutrophication in surface water bodies. In this study, a powder of titanium oxysulfate-sulfuric acid made of ion-exchange materials was immobilized in an alginate gel and this material was examined to evaluate its phosphorous removal efficiency. Equilibrium and kinetic studies were carried out to quantify the adsorption capacity and time dependent removal rate of phosphorous. Adsorption isotherms and kinetic parameters were obtained for the entrapped titanium beads with three different methods. Equilibrium data were analyzed using Langmuir adsorption isotherm model and found to be well fitted to the model. The maximum adsorption capacity for phosphorous by the titanium bead synthesized with the solution method was 92.26 mg/g. Kinetic data followed a pseudo-second-order kinetic model. Due to the low production cost and high adsorption capacity, the titanium bead synthesized by the solution method has a potential to be utilized for the cost-effective removal of phosphorous from wastewater.

Improvement of Removal Characteristics of Uranium by the Immobilization of Diphosil Powder onto Alginate Bed (다이포실 분말수지의 비드화에 의한 우라늄 제거특성 개선)

  • Kim Kil-Jeong;Shon Jong-Sik;Hong Kwon-Pyo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.133-138
    • /
    • 2006
  • Chemical wastes containing small amounts of uranium can not be disposed of them after treatment as an industrial waste, because the uranium concentration in the final dry cake exceeds the exemption level. Especially for the removal of uranium in this study, the method for immobilizing Diphosil powder within alginate beads is adopted to make a bead form from a powdered resin. Sodium alginate bead itself showed a capability to uptake uranium to above 60%, but the value was decreased to below 30% after equilibrium. The adsorption rate of uranium increased with the increasing content of Diphosil in the sodium alginate bead. Diphosil resin itself showed very fast uptake of uranium from early stages, and then the rates were leveled off. Diphosil bead showed an improved capability to uptake uranium considering the pure Diphosil content in the composite bead, and provide a considerable potential for further applications of a continuous process by using Diphosil as a bead form.

  • PDF

Performance Comparison of Continuous Reactors for Bioethanol Production Based on Glycerol (글리세롤 기반의 바이오에탄올 생산을 위한 연속생산반응기의 성능 비교)

  • Lee, Sang-Jun;Song, Yoon-Seok;Kim, Sung-Bong;Kang, Sung-Woo;Han, Sung-Ok;Park, Chul-Hwan;Kim, Seung-Wook
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.328-332
    • /
    • 2011
  • Ethanol production using glycerol as a carbon source was performed by Enterobacter aerogenes immobilized on calcium alginate beads. To improve the ethanol production, the optimal conditions such as loading amount of immobilized cells and glycerol concentration were investigated. The optimal loading amount of immobilized cells and glycerol concentration were 10 mL of calcium alginate bead and 10 g/L, respectively. Consequently, glycerol consumption rate, ethanol concentration and yield were 0.32 g/$L{\cdot}h$, 3.38 g/L and 0.43 g/g on the batch production, respectively. Continuous production of ethanol was successfully achieved using two types of immobilized cell reactors (continuous stirred tank reactor and packed bed reactor) from 10 g/L of glycerol. In the continuous stirred tank reactor, glycerol consumption, ethanol concentration, specific productivity and yield were 9.8 g, 4.67 g/L, 1.17 g/$L{\cdot}h$, 0.48 g/g, respectively. The concentration of produced ethanol was 38-44% higher comparison to batch fermentation, and continuous stirred tank reactor showed better performance than packed bed reactor.

Microbial Removal Using Layered Double Hydroxides and Iron (Hydr)oxides Immobilized on Granular Media

  • Park, Jeong-Ann;Lee, Chang-Gu;Park, Seong-Jik;Kim, Jae-Hyeon;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.149-156
    • /
    • 2010
  • The objective of this study was to investigate microbial removal using layered double hydroxides (LDHs) and iron (hydr)oxides (IHs) immobilized onto granular media. Column experiments were performed using calcium alginate beads (CA beads), LDHs entrapped in CA beads (LDH beads), quartz sand (QS), iron hydroxide-coated sand (IHCS) and hematite-coated sand (HCS). Microbial breakthrough curves were obtained by monitoring the effluent, with the percentage of microbial removal and collector efficiency then quantified from these curves. The results showed that the LDH beads were ineffective for the removal of the negatively-charged microbes (27.7% at 1 mM solution), even though the positively-charged LDHs were contained on the beads. The above could be related to the immobilization method, where LDH powders were immobilized inside CA beads with nano-sized pores (about 10 nm); therefore, micro-sized microbes (E. coli = 1.21 ${\mu}m$) could not diffuse through the pores to come into contact with the LDHs in the beads, but adhere only to the exterior surface of the beads via polymeric interaction. IHCS was the most effective in the microbial removal (86.0% at 1 mM solution), which could be attributed to the iron hydroxide coated onto the exterior surface of QS had a positive surface charge and, therefore, effectively attracted the negatively-charged microbes via electrostatic interactions. Meanwhile, HCS was far less effective (35.6% at 1 mM solution) than IHCS because the hematite coated onto the external surface of QS is a crystallized iron oxide with a negative surface charge. This study has helped to improve our knowledge on the potential application of functional granular media for microbial removal.

Production of casein phosphopeptides using Streptococcus faecalis var. liquefaciens cell immobilization (Streptococcus faecalis var. liquefaciens 전세포 고정화법을 이용한 Casein Phosphopeptides 생산)

  • Lee, Ki-Sung;Shin, Jae-Yoon;Jang, Yi-Hyun;Kweon, Dae-Hyuk;Park, Ki-Moon;Jin, Yong-Su
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.59-64
    • /
    • 2008
  • Optimum conditions for production of casein phosphopeptides (CPP) from sodium casenate by immobilized cell culture of Streptococcus faecalis var. liquefaciens were investigated. Immobilized cells were made by mixing 60% sodium alginate solution with an equal volume of culture broth at the end of exponential phase and subsequently dropping the mixture into $CaCl_{2}$ solution. Optimum conditions for CPP production by the immobilized cells were the same as those ($50^{\circ}C$, pH 7.0, and 10% substrate concentration) by the crude enzyme solution from the supernatant of culture broth. Optimum loading volume of the immobilized cells into a batch reactor was 30% (w/v). Using a continuous reactor loaded by the immobilized cells under the identified optimal conditions, we were able to produce CPP continuously up to 30 days with a maximum CPP conversion efficiency of 20%.

Ethanol Production Using Alginate Immobilized Cells of Zymomonas rnobilis (고정화 Zymomonas mobilis 균체로부터 에탄올 생산)

  • 한면수;정동효
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.588-596
    • /
    • 1992
  • The fermentation characteristics of ethanol production by the use of immobilized Zymomonas mobilis KCTC 1534 cells were investigated in terms of formation factors such as substrate and product concentration. In batch fermentation, the maximum values of specific ethanol productivity, specific substrate uptake rate, ethanol yield, and glucose conversion rate were $29.14g/{\ell}{\cdot}h$, $60.24g/{\ell}{\cdot}h$, 0.48g/g, and 98.4%, respectively, with 17% glucose medium, and its ethanol productivity was $2.91g/{\ell}{\cdot}h$ in the case of 25 hour fermentation time. Repeated batch fermentation was possible for 30 days with 2.24-$2.94g/{\ell}{\cdot}h$ ethanol productivity. In semicontinuous fermentation, the maximum ethanol productivity was shown to be $15.7g/{\ell}{\cdot}h$ at $0.36h^{-1}$ effective dilution rate with 17% glucose concentration. In this case, ethanol yield coefficient and glucose conversion rate were 0.39 g/g, 64.7%, respectively.

  • PDF

Production of 5균-GMP by Immobilized 5균-GMP Producing Fusant RC102 (5균-GMP 생산 융합균주 RC102의 고정화에 의한 5균-GMP 생산)

  • 이인선;조정일
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.5
    • /
    • pp.779-784
    • /
    • 1995
  • The effective production of 5'-GMP(5'-Guanylic acid) by immobilized 5'-GMP producing fusant RC102(intergeneric protoplast fusion between Brevibacterium ammoniagenes ATCC21263 and Corynebacterium glutamicum ATCC21171) was investigated. The Fusant RC102 was immobilized by entrapping in -carrageenan, agar, polyacrylamide or Ca-alginate. 3% k-carrageenan was selected as the most suitable matrix. In the production of 5'-GMP using the immobilized whole cells of fusant RC102, the optimum conditions were $32^{\circ}C$, pH 8.0, $30\mu\textrm{g}/L\;of\;Mn^{2+},\;1{\times}10^{-6}%\;of\;Zn^{2+}$. In order to use fermentation medium containing CSL(Corn Steep Liquor) plentiful in $Mn^{2+}$, the optimum conditions of penicillin G, D-cycloserine and POESA(polyoxyethylene stearylamine) for production of 5'-GMP were 0.8unit/ml, 0.8unit/ml, 0.8unit/ml and 5mg/ml, respectively. Cationic surfactant, POESA was effective and superior to the antibiotics, penicillin G or D-cyloserine in 5'-GMP productivity. The condinuous fermentation using immobilized fusant RC102 showed that 5'-GMP productivity was stable for more than 15 days.

  • PDF

Citric Acid Production Using Immobilized Yeast Activated with $CaCl_2$ - containing Medium (고정화효모를 사용한 시트르산 생성에 있어서의 $CaCl_2$ 함유배지에 의한 활성화 효과)

  • 임동준;최차용
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.4
    • /
    • pp.285-291
    • /
    • 1986
  • Immobilized Candida lipolytica cells were prepared by entrapping the whole cells in calcium alginate gel. To enhance citric acid productivity, immobilized cells were Incubated with activation medium in fluidized-bed reactors. When the activation was done in batch operation, maximum citric acid productivity appeared in a much shorter time than in continuous operation. Activated immobilized cells were enhanced about 10-fold in citric acid production relative to non-activated immobilized cells. The productivity of citric acid was also influenced by bead size. When Immobilized cells were reacted in a fluidized-bed reactor with the same quantity of cells, the citric acid productivity was increased as the bead size was decreased.

  • PDF

Optimal Condition for Citric Acid Production from Milk Factory Waste Water by Using the Immobilized Cells of Aspergillus niger (고정화 Aspergillus niger 세포를 이용한 우유공장 폐수로부터 구연산 생산의 최적 조건)

  • 이용희;서명교;노호석;이동환;정경태;정영기
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.154-157
    • /
    • 2004
  • Immobilized cells of Aspergillus niger was employed to produce citric acid by fermentation of milk factory waste water. A. niger ATCC 9142 as a citric acid production strain was cultured for 3 days and was entrapped with Ca-alginate bead about 2.5∼3.5 mm. The optimal pH and temperature were estimated to be 3.0 and $30^{\circ}C$, respectively. Dilution rate for fermentation was calculated to be $0.025 h^{-1}$ . Maximum amount of citric acid was obtained at 4.5 g/$\ell$ with the optimized fermentation condition. The yield of citric acid produced by immobilized A. niger ATCC 9143 was 70.3%. The yield was increased by 20% with immobilized cell, compared to that of the shake flask culture. Hence, the milk factory waste water is worthy to be used for the substrate of citric acid fermentation.

Production of tissue-type plasminogen activator from immobilized CHO cells introduced hypoxia response element

  • Bae, Geun-Won;Kim, Hong-Jin;Kim, Gi-Tae;Kim, Ik-Yeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.257-260
    • /
    • 2002
  • Dissolved oxygen level of cell culture media has a critical effect on cellular metabolism, which governs specific productivity of recombinant proteins and mammalian cell growth However, in the cores of cell aggregates or cell-immobilized beads, oxygen level frequently goes below a critical level. Mammalian cells have a number of genes induced in the lower level of oxygen, and the genes contain a common cis-acting element (-RCGTG-), hypoxia response element (HRE). By binding of hypoxia inducible factor-l (HIF-I) to the HRE, promoters of hypoxia inducible genes are activated, which is a survival mechanism. In this work, to develop a CHO cell capable of producing recombinant proteins in immobilization and high density cell culture efficiently, mammalian expression vectors containing human tissue-type plasminogen activator (t-PA) gene controlled by HRE were constructed and stably transfected into the CHO cells. In $Ba^{2+}$ -alginate immobilization culture, CHO/pCl/dhfr/2HRE-t-PA cells produced 2 folds higher recombinant t-PA activity than CHO/pCl/dhfrlt-PA cells without $CoCl_2$ treatment. Furthermore, in repeated fed batch culture, productivity of t-PA in immobilized CHO/pCI/dhfr/2HRE-t-PA cells was 121 ng/ml/day, total production of 0.968 mg/day at 11 days culture while CHO/pCIIdhfrlt-PA cells was 22.8 ng/ml/day. All these results indicate that HRE is very useful for the enhancement of protein productivity in mammalian cell cultures.

  • PDF