• 제목/요약/키워드: Algicides

검색결과 6건 처리시간 0.022초

Acute Toxicity Assessment of New Algicides of Thiazolidinediones Derivatives, TD53 and TD49, Using Ulva pertusa Kjellman

  • Yim, Eun-Chae;Park, In-Taek;Han, Hyo-Kyung;Kim, Si-Wouk;Cho, Hoon;Kim, Seong-Jun
    • Environmental Analysis Health and Toxicology
    • /
    • 제25권4호
    • /
    • pp.273-278
    • /
    • 2010
  • Objectives : This study was aimed to examine the acute toxicity assessment of two new algicides, thiazolidinediones derivatives (TD53 and TD49), which were synthesized to selectively control red tide, to the marine ecosystem. Methods : The assessment employed by a new method using Ulva pertusa Kjellman which has been recently accepted as a standard method of ISO. The toxicity was assessed by calculating the $EC_{50}$ (Effective Concentration of 50%), NOEC (No Observed Effect Concentration) and PNEC (Predicted No Effect Concentration) using acute toxicity data obtained from exposure experiments. $EC_{50}$ value of TD49 and TD53 was examined by 96-hrs exposure together with Solutol as a TD49 dispersing agent and DMSO as a TD53 solvent. Results : $EC_{50}$ value of TD53 was $1.65\;{\mu}M$. From the results, values of NOEC and PNEC were calculated to be $0.63\;{\mu}M$ and 1.65 nM, respectively. DMSO under the range of $0{\sim}10\;{\mu}M$, which is same solvent concentration used in examining TD53, showed no toxic effect. $EC_{50}$ value of TD49 was $0.18\;{\mu}M$ and that of Solutol was $1.70\;{\mu}M$. NOEC and PNEC of TD49 were $0.08\;{\mu}M$ and 0.18 nM, respectively and those for Solutol were $1.25\;{\mu}M$ and 1.25 nM, respectively. Conclusions : From the values of NOEC, PNEC of TD53 and TD49, TD49 showed 9 times stronger toxicity than TD53. On the other hand, DMSO showed no toxicity on the Ulva pertusa Kjellman, but Solutol was found to be a considerable toxicity by itself.

Improved Dissolution of Poorly Water Soluble TD49, a Novel Algicidal Agent, via the Preparation of Solid Dispersion

  • Lee, Hyoung-Kyu;Cho, Hoon;Han, Hyo-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권3호
    • /
    • pp.181-185
    • /
    • 2010
  • The objective of this study was to improve the extent of drug release as well as the dissolution rate of TD49, a novel algicidal agent, via the preparation of solid dispersion (SD). Among the various carriers tested, $Solutol^{(R)}$ HS15 was most effective to enhance the solubility of TD49. Subsequently, SDs of TD49 were prepared by using $Solutol^{(R)}$ HS15 and their solubility, dissolution characteristics and drug crystallinity were examined at various drug-carrier ratios. Solubili ty of TD49 was increased significantly in accordance with increasing the ratio of $Solutol^{(R)}$ HS15 in SDs. Compared to untreated powders and physical mixtures (PMs), SDs facilitated the faster and greater extent of drug release in water. Particularly, SD having the drug-carrier ratio of 1:20 exhibited approximately 90% of drug release within 1 hr. Differential scanning calorimetry (DSC) thermograms and X-ray diffraction (XRD) patterns suggested that SDs might enhance the dissolution of TD49 by changing the drug crystallinity to an amorphous form in addition to the increased solubilization of drug in the presence of $Solutol^{(R)}$ HS15. In conclusion, SD using $Solutol^{(R)}$ HS15 appeared to be effective to improve the extent of drug release and the dissolution rate of poorly water soluble TD49.

유해적조생물 Cochlodinum polykrikoides를 살멸하는 Brachybacterium sp. SY-97의 분리 및 특성 (Isolation and Characteristics of Brachybacterium sp. SY -97 Killing the Harmful Dinoflagellate Cochlodinium polykrikoides)

  • 김윤숙;정성윤;이상준;이원재
    • 한국환경과학회지
    • /
    • 제18권4호
    • /
    • pp.435-443
    • /
    • 2009
  • A bacterial strain SY-97 that showed algicidal activity against Cochlodinium polykrikoides was isolated from coastal water of Uljin (eastern coast of Korea) in August, 2005. The isolated strain was identified as Brachybacterium sp. by morphological and biological tests, and analysis of 16S rDNA sequence. The optimal culture conditions for the growth of strain SY-97 were $30^{\circ}C$, initial pH 7.0, and salinity 2.0%. From the result of cell culture insert experiment, Brachybacterium sp. SY-97 is assumed to produce secondary metabolites which have algicidal activity. When 10% culture filtrate of this strain was applied to C. polykrikoides ($1.2{\times}10^4\;cells/m{\ell}$) cultures, 100% of C. polykrikoides cells was destroyed within 15 hours. The released algicides were heat-tolerant to $100^{\circ}C$ and stable in pH $6.0{\sim}10.0$. These results suggest that Brachybacterium sp. SY-97 is potentially useful for controlling outbreaks of C. polykrikoides.

신규 살조물질인 Thiazolidinedione 유도체 (TD53)의 해양생태계에 대한 급성독성평가 (Acute Toxicity Assessment of New Algicide, Thiazolidinedione Derivative (TD53) to Marine Ecosystem)

  • 임은채;신준재;박인택;한효경;김시욱;조훈;김성준
    • KSBB Journal
    • /
    • 제26권1호
    • /
    • pp.7-12
    • /
    • 2011
  • In order to perform an acute toxicity assessment of a new algicide, thiazolidinedione derivative (TD53) with enhanced solubility and lower toxicity to marine ecosystem, representative 3 organisms: plant plankton (Skeletonema costatum), animal plankton (Daphnia magna), fish (Paralichthys olivaceus) related in the food chain of marine ecosystem according to OECD standard methods were employed in the exposure experiment. The exposure assessment showed that $EC_50$ of S. costatum in 96-hour, $EC_50$ of D. magna in 48-hour and $LC_50$ of P. olivaceus in 72-hour for TD53 were $1.53\;{\mu}M$, $0.61\;{\mu}M$ and $2.14\;{\mu}M$ respectively. NOEC (No Observed Effect Concentration) and PNEC (Predicted No Effect Concentration) were calculated to be $0.25\;{\mu}M$ and 6.10 nM, respectively from $EC_50$ of most sensitive strain, D. magna. Comparing with the results of toxicity assessment previously performed by using Ulva pertusa Kjellman accepted as an ISO standard method, the values of PNEC showed 3.7 times lower toxicity in case of this study employing 3 organisms, indicating that if the organisms which are more representative and sensitive in marine ecosystem are further investigated, more accurately and validly predicted toxicity of TD53 could be applied in field.

Microcosm 실험을 이용한 생물유래 살조물질 Naphthoquinone 유도체의 유해 남조류 제어효과 및 기존물질과의 우수성 비교 (Superiority comparison of biologically derived algicidal substances (naphthoquinone derivative) with other optional agents using microcosm experiments)

  • 주재형;박범수;김세희;한명수
    • 환경생물
    • /
    • 제38권1호
    • /
    • pp.114-126
    • /
    • 2020
  • 유해 남조류 Microcystis 종에 의한 녹조현상은 매년 빈번하게 일어나며, 이로 인한 수자원의 질적 변화와 먹는 물확보에 문제가 발생하고 있다. Microcystis 종에 의한 피해를 막고자 개발된 naphthoquinone (NQ) 유도체 물질의 장점 분석을 위해 국내에서 빈번히 사용되는 황토를 이용한 microcosm 실험을 하고자 하였다. 그 결과, NQ 40, NQ 2-0 물질은 선행 연구 결과와 동일하게 유해 남조류 Microcystis 종을 선택적으로 99.9%, 99.6% 제어했으며, 식물플랑크톤 종 다양성을 증진시켰다. 그러나, 황토를 처리한 실험구는 실험 초기 일시적인 조류 제어효과를 보인 후 다시 증가하였으며, 유용 조류를 포함한 모든 식물플랑크톤에게 적용되어 다른 조류의 성장은 이루어지지 않았다. 뿐만 아니라, NQ 물질을 처리한 처리구는 비생물학적, 생물학적요인 모두 영향을 미치지 않았으며, 대조구와 유사한 경향이 관찰되었다. 따라서, 최종적으로 개량된 유해 남조류 제어물질 NQ 2-0은 높은 살조효과, 선택적 제어효과, 저독성, 자연분해에 의한 비잔류성 뿐만 아니라, 편의성 및 경제성까지 갖춘 새로운 살조물질로서 현재까지 개발된 살조물질보다 현장 생태계 적용에 가장 적합한 친환경 녹조제어 물질이라고 판단된다.

신규 살조물질인 Thiazolidinedione 유도체 (TD49)의 해양생태계에 대한 급성독성평가 (Acute Toxicity Assessment of New Algicides, Thiazolidinedione Derivative (TD49) to Marine Ecosystem)

  • 임은채;신준재;박인택;한효경;김시욱;조훈;김성준
    • KSBB Journal
    • /
    • 제25권6호
    • /
    • pp.527-532
    • /
    • 2010
  • A thiazolidinedione derivative, TD49 with the highly selective algicide to red tide was newly synthesized and its acute toxicity was examined in order to evaluate the effect on aquatic ecosystems of coast. Major three species having important role in the food chain of marine ecosystem, such as Skeletonema costatum of microalgae, Daphnia magna of crustacea, Paralichthys olivaceus of flatfish fingerling were employed for the acute toxicity assessment. $EC_50$ or $LC_50$ as the assessment criterion was investigated to each specie, and NOEC (No Observed Effect Concentration) and PNEC (Predicted No Effect Concentration) from most sensitive specie to toxicity of TD49 were further calculated. $EC_50$ of S. costatum in 96-hour, $EC_50$ of D. magna in 48-hour, and $LC_50$ of P. olivaceus in 72-hour for TD49 were $0.34\;{\mu}M$, $0.68\;{\mu}M$, and $0.58\;{\mu}M$, respectively. NOEC from the results of S. costatum was estimated to be $0.20\;{\mu}M$ and PNEC was estimated as 3.40 nM by applying factor value of 100 to $EC_50$ $0.34\;{\mu}M$ of S. costatum. In addition, it was revealed that Solutol used as the dispersing agent of TD49 had very little toxic influence under the concentration range of $0{\sim}0.4\;{\mu}M$ used in TD49 toxicity experiment. Although the estimated concentration of TD49 that will be sprayed onto the coastal field for the algicide is higher than NOEC value, it is considered that the spraying concentration would not be a considerable problem due to a dilution effect by tide at the opened coast.