• Title/Summary/Keyword: Algal growth

Search Result 408, Processing Time 0.028 seconds

Algal Growth Potential Test (AGPT) in Streams and Embayment of the Okchon Stream Watershed, Korea (옥천천 유역의 하천과 만곡부에서 조류 생장 잠재력 측정)

  • Sin,Jae-Gi;Kim,Dong-Seop;Lee,Hye-Geun;Maeng,Seung-Jin;Hwang,Sun-Jin
    • ALGAE
    • /
    • v.18 no.2
    • /
    • pp.169-176
    • /
    • 2003
  • Algal growth potential test (AGPT) bioassay were conducted to evaluate the stream and reservoir water in the Okchon Stream Watershed during May to September 2002. The water quality of the stream water was clean in the upstream, deteriorating toward the downstream. In particular, SRP and $NH_4$ significantly increased due to treated wastewater. The average AGPT value of the Okchon Stream watershed was 22.4 mg dw ${\cdot}l^{-1}$, with the range of 0- 195.7 mg dw ${\cdot}l^{-1}$. AGPT value was the highest immediately after inflow of treated wastewater, averaging 91.3 mg dw${\cdot}l^{-1}$. AGPT was highly correlated with SRP, $NH_4$ and TIN factors, with P having the greatest effect on the growth of algae. Among N components, $NH_4$ was preferred to $NO_3$ for the growth of algae. Likewise, AGPT was closely linked to meteological and hydrological effects and development of natural phytoplankton. In survey stations, mesotrophic, eutrophic and hypertrophic conditions accounted for 43%, 21% and 36%, respectively. On the other hand, hypertrophic condition focused on the downstream reaches. AGPT was useful in determining not only the limiting nutrients but also the water fertility for the growth of algae. Based on the AGPT results, the management of point sources for water pollution in treated wastewater was important in the protection of aquatic environment in the stream and embayment.

Characteristics and Structure of Benthic Algal Community in Pohang New Port Area

  • Yoo, Jong-Su;Park, In-Seok;Song, Young-Chae;Seo, Young-Wan;Doe, Geun-Young;Lee, Jae-Wan;An, Joong-Kwan
    • Journal of Navigation and Port Research
    • /
    • v.30 no.4
    • /
    • pp.309-314
    • /
    • 2006
  • Community structure and biodiversity of benthic marine algae were studied in the rocky shore of Phohang New Port, Yeoungil Bay. A total of 79 species of marine algae including 8 Chlorophyta, 23 Phaeophyta and 48 Rhodophyta are listed. The dominant algal species were Corallina pilulifera in all seasons, and Sargassum homeri in winter. Lomentaria catenata, Lomentaria hakodatensis, Grateloupia laceolata, Sargassum thunbergii, Chondria crassicaulis, Ulva pertusa, and Hypnea charoides were subdominant at different seasons. The algal biomass per unit area of the benthic algal community in Pohang New Port under construction was 14506 - 398.93 g dry wt m-2, which means that its annually averaged value is 273.45 g dry wt m-2 . The seasonal change in algal biomass showed highs in winter and spring, and lows in summer and autumn. The algal species diversity (H') based on algal biomass was 2.07 annually in average, with 2.42 in winter, 2.65 in spring, 1.79 in summer and 1.43 in autumn. It was high in winter and spring seasons and low in summer and autumn seasons. It is caused by that spring and winter are the profitable growth time for algae and species components in this study were dominated by the annual or seasonal rather than perennial plants.

Effect of Silver Ion Solution on the Inhibition of Microcystis Growth (은이온 수용액의 Microcystis 생장 억제 효과)

  • Choi, Gang-Guk;Lee, Sang-Hun;Bae, Kie-Seo;Shin, Jae-Ki;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.183-191
    • /
    • 2008
  • The effect of silver ion solution on the growth of Microcystis aeruginosa UTEX 2388 (cyanobacterium) and Chlorella sp. KCTC AG20136 (green alga) was investigated using separated and mixed culture in filtered natural water and BG11 medium. In separated culture, M. aeruginosa UTEX 2388 and Chlorella sp. KCTC AG20136 were found to be sensitive to 0.01 and 0.1 mg L$^{-1}$ of silver ion, respectively. Also, the silver ion concentrations for the growth inhibition of M. aeruginosa UTEX 2388 and Chlorella sp. KCTC AG20136 in the mixed culture were same in separated culture. Cyanobacteria were more sensitive to the silver ion solution than green algae. In bloom sample, the minimal inhibition concentration of silver ion solution for the low Chl-${\alpha}$ sample (110$\sim$190 ${\mu}g$ L$^{-1}$) and high Chl-${\alpha}$ sample (1,500$\sim$1,900 ${\mu}g$ L$^{-1}$) was about 0.1 and 3.0 mg L$^{-1}$, respectively. The silver ion concentration for the inhibition of algal bloom sample was affected by the algal biomass. In order to use silver ion solution for the control of algal bloom, the silver ion concentration must be determined in consideration of a minimal effect on the environment.

Higher Biomass Productivity of Microalgae in an Attached Growth System, Using Wastewater

  • Lee, Seung-Hoon;Oh, Hee-Mock;Jo, Beom-Ho;Lee, Sang-A;Shin, Sang-Yoon;Kim, Hee-Sik;Lee, Sang-Hyup;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1566-1573
    • /
    • 2014
  • Although most algae cultivation systems are operated in suspended culture, an attached growth system can offer several advantages over suspended systems. Algal cultivation becomes light-limited as the microalgal concentration increases in the suspended system; on the other hand, sunlight penetrates deeper and stronger in attached systems owing to the more transparent water. Such higher availability of sunlight makes it possible to operate a raceway pond deeper than usual, resulting in a higher areal productivity. The attached system achieved 2.8-times higher biomass productivity and total lipid productivity of $9.1g\;m^{-2}day^{-1}$ and $1.9g\;m^{-2}day^{-1}$, respectively, than the suspended system. Biomass productivity can be further increased by optimization of the culture conditions. Moreover, algal biomass harvesting and dewatering were made simpler and cheaper in attached systems, because mesh-type substrates with attached microalgae were easily removed from the culture and the remaining treated wastewater could be discharged directly. When the algal biomass was dewatered using natural sunlight, the palmitic acid (C16:0) content increased by 16% compared with the freeze-drying method. There was no great difference in other fatty acid composition. Therefore, the attached system for algal cultivation is a promising cultivation system for mass biodiesel production.

Charaterization of Biomass Production and Wastewater Treatability by High-Lipid Algal Species under Municial Wastewater Condition (실제 하수조건에서 고지질 함량 조류자원의 생체생성과 하수처리 특성 분석)

  • Lee, Jang-Ho;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.333-340
    • /
    • 2010
  • Wastewater treatment using algal communities and biodiesel production from wastewater-cultivated algal biomass is a promising green growth technology. In literature, there are many studies providing information on algal species producing high content of lipid. However, very little is known about adaptability and wastewater treatability of such high-lipid algal species. In this study, we attempted to characterize algal biomass production and wastewater treatability of high-lipid algal species under municipal wastewater condition. For this, four known high-lipid algal strains including Chlorella vulgaris AG 10032, Ankistrodesmus gracilis SAG 278-2, Scenedesmus quadricauda, and Botryococcus braunii UTEX 572 were individually inoculated into municipal wastewater where its indigenuous algal populations were removed prior to the inoculation, and the algae-inoculated wastewater was incubated in the presence of light source (80${\mu}E$) for 9 days in laboratory batch reactors. During the incubations, algal biomass production (dry weight) and the removals of dissolved organics (COD), nitrogen and phosphorous were measured in laboratory batch reactors. According to algal growth results, C. vulgaris, A. gracilis and S. quadricauda exhibited faster growth than indigenuous wastewater algal populations while B. braunii did not. The wastewater-growing strains exhibited efficient removals of total-N, ${NH_4}^+$-N, Total-P and ${PO_4}^{3-}$-P which satisfy the Korea water quality standards for effluent from municipal wastewater treatment plants. A. gracilis and S. quadricauda exhibited efficient and stable treatability of COD but C. vulgaris showed unstable treatability. Taken together with the results, A. gracilis and S. quadricauda were found to be suitable species for biomass production and wastewater treatment under municipal wastewater condition.

Growth regime and environmental remediation of microalgae

  • Hammed, Ademola Monsur;Prajapati, Sanjeev Kumar;Simsek, Senay;Simsek, Halis
    • ALGAE
    • /
    • v.31 no.3
    • /
    • pp.189-204
    • /
    • 2016
  • Microalgal bioremediation of CO2, nutrients, endocrine disruptors, hydrocarbons, pesticides, and cyanide compounds have evaluated comprehensively. Microalgal mitigation of nutrients originated from municipal wastewaters, surface waters, and livestock wastewaters has shown great applicability. Algal utilization on secondary and tertiary treatment processes might provide unique and elegant solution on the removing of substances originated from various sources. Microalgae have displayed 3 growth regimes (autotrophic, heterotrophic, and mixotrophic) through which different organic and inorganic substances are being utilized for growth and production of different metabolites. There are still some technology challenges requiring innovative solutions. Strain selection investigation should be directed towards identification of algal that are extremophiles. Understanding and manipulation of metabolic pathways of algae will possible unfold solution to utilization of algae for mitigation of dissolve organic nitrogen in wastewaters.

An Initiative Study on Relationship between Algal Blooms and Asian Dust for Regulation of Algal Blooms (조류 성장 억제를 위한 녹조 및 적조 발생과 황사의 상관관계 초기적 연구)

  • Kim, Tai-Jin;Jeong, Jaechil;Seo, Rabeol;Kim, Hyung Moh;Kim, Dae Geun;Chun, Youngsin;Park, Soon-Ung;Yi, Sehyoon;Park, Jun Jo;Lee, Jin Ha;Lee, Jay J.;Lee, Eun Ju
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • Although the problems of the algal blooms have been world-widely observed in freshwater, estuary, and marine throughout the year, it is not yet certain what are the basic causes of such blooms. Consequently, it is very difficult to predict when and where algal blooms occur. The constituents of the Asian dust are in a good agreement with the elements required for the algal growth, which suggests some possible relationship between the algal blooms and the Asian dust. There have been frequently algal blooms in drinking water from rivers or lakes. However, there is no any algal blooms in upwelling waters where the Asian dust cannot penetrate into the soil due to its relatively weak settling velocity (size of particles, $4.5{\pm}1.5{\mu}m$), which implies the possible close relationship of the Asian dust with algal blooms. The present initiative study is thus intended firstly in Korea to illustrate such a relationship by reviewing typical previous studies along with 12 years of weekly iron profiles (2001~2012) and two slant culture experiments with the dissolved Asian dust. The result showed bacterial suspected colonies in the slant culture experiment that are qualitatively in a good agreement with the recent Japanese studies. Since the diatoms require cheap energy (8%) compared to other phytoplankton (100%) to synthesize their cell walls by silicate, the present results can be used to predict algal blooms by diatoms if the concentrations of iron and silicate are available during spring and fall. It can be postulated that the algal blooms occur only if the environmental factors such as light, nutrients, calm water surface layer, temperature, and pH are simultaneously satisfied with the requirements of the micronutrients of mineral ions supplied by the Asian dust as enzymatic cofactors for the rapid bio-synthesis of the macromolecules during algal blooms. Simple eco-friendly methods to regulate the algal blooms are suggested for the initial stage of blooming with limited area: 1) to cover up the water surface with black curtain and inhibit photosynthesis during the day time, 2) to blow air (20.9%) or pure oxygen into the bottom of the water and inhibit rubisco for carbon uptake and nitrate reductase for nitrogen uptake activities in algal growth during the night, 3) to eliminate the resting spores or cysts by suction of bottom sediments as deep as 5 cm to prevent the next year germinations.

Numerical Modeling Effects of a Skimmer Weir Method on the Control of Algal Growth in Daecheong Reservoir (부상웨어 설치에 따른 대청호 조류 성장 억제 효과 수치모의)

  • Kim, Yu Kyung;Chung, Se Woong;Lee, Heung Soo;Jung, Yong Rak
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.581-590
    • /
    • 2007
  • A float-type weir has been proposed for the control of algal blooms in some of eutrophic reservoirs recently. It is known as a costly and ecologically sound method, but there is little understanding about the sustainability of this low-cost technology for reservoirs that are located in monsoon climate areas where large flood events during the summer cause high water surface fluctuations. The objective of this study was to assess the effectiveness of a skimmer weir aimed at controlling algal blooms in the lacustrine zone and near the drinking water withdrawal structures of Daecheong Reservoir under various hydrodynamic flow conditions. The effect of weir on the control of algal blooms was simulated using a laterally averaged two-dimensional hydrodynamic and eutrophication model that can accommodate vertical displacement of the weir following the water surface fluctuations. Numerical simulations were performed for two different hydrological conditions, 2001 and 2004 for representing drought year and normal year, respectively. The results showed that the weir is very effective method to control algal blooms in the reservoir by curtailing the transport of phosphorus and algae from contaminated inflow to the downstream lacustrine epilimnion during the draught year. However, large flood events occurred in 2004 transported nutrients and algae built upstream of the weir into the downstream euphotic zone by strong entrainments.

Long-chain alcohols derived from the microalga Monoraphidium

  • Yang, Xuewei;Dai, Xin;Zhang, Rui;Shao, Cong;Geng, Shu;Chen, Guangyi;Liu, Xianhua;Wang, Guangyi
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • This study was to investigate the composition and characteristics of long-chained alcohols extracted from the algal strain Monoraphidium 3s35. The production of biomass was optimized using different cultivation methods. Under the aerated growth condition, this strain yielded up to 37.26% extracts of dry weight and $576mgL^{-1}$ biomass. The major compounds of the extracts are mainly long-chained alcohols (89.24%), with carbon chain length ranging from 12 to 20. Interestingly, or the long-chained alcohols, 3-(2-Methoxyethyl)-1-nonanol, 3,7,11,15-Tetramethyl-2-hexadecen-1-ol and oleyl alcohol accounted for 53.68%, 23.45%, and 12.11%, respectively. Because of their amphipathic nature, these long-chained alcohols have been widely used in bioenergy production and cosmetics industry. Furthermore, Monoraphidium 3s35 produced 9.73% of $C_{17}$ and $C_{20}$ alkanes, which can be used as an important supplement for the petrodiesel-like fuel.