• Title/Summary/Keyword: Algal growth

Search Result 410, Processing Time 0.027 seconds

Cyanobacterial Bioassay (AGP test) on the Water Fertility of Treated Wastewater Effluents Discharged into Euiam and Paldang Reservoirs, Korea (의암호 및 팔당호에 유입되는 주요 하수처리 방류수의 수질 비옥도 생물검정: Algal Growth Potential(AGP) Test)

  • Seo, Wanbum;Lee, Su-Woong;Kim, Keonhee;Park, Chaehong;Choi, Bong-Geun;Sim, Yeon Bo;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.79-95
    • /
    • 2017
  • Euiam and Paldang Reservoirs have often been facing water quality problems, such as eutrophication, algal blooms and off-flavors by treated wastewater effluent (TWE) in the North-Han and the Han River basins, but little is examined on the direct biological effect of TWE. This study tested algal growth potential (AGP) of four TWEs discharged into Euiam and Paldang Reservoirs to evaluate water fertility in September 2014 and March and September 2015. Test alga was used Anabaena circinalis isolated from Paldang Reservoir. Mean concentration of T-N and T-P in TWEs was $3,956.7{\mu}g\;N\;L^{-1}$ and $50.8{\mu}g\;P\;L^{-1}$, and the proportion of $NO_3-N$ and $PO_4-P$ to the total fraction was 72.1% and 40.8%, respectively. Both N and P were high in TWEs, but much higher N than P concentration indicates strong P-limitation. As a consequence, the maximum AGP was determined by $PO_4-P$ concentration (r=0.998, p<0.01). Mean AGP value was $15.4mg\;dw\;L^{-1}$ among four effluents indicating its eutrophic condition. Due to the establishment of tertiary (advanced T-P) treatment method in the studied plants recently, P concentration was significantly decreased in TWEs compared to the years prior to 2012. However, P concentration seems to be still high enough to cause eutrophication and algal blooms. Therefore, wastewater treatment to P-free level needs to be considered if effluents are directly discharged into the drinking water resources.

A new Korean red algal species, Haraldiophyllum udoensis sp. nov. (Delesseriaceae, Rhodophyta)

  • Kim, Myung-Sook;Kang, Jeong-Chan
    • ALGAE
    • /
    • v.26 no.3
    • /
    • pp.211-219
    • /
    • 2011
  • The genus Haraldiophyllum comprises seven species worldwide. Six of these are endemics with limited distributions, whereas the type species H. bonnemaisonii has been reported from the Atlantic Ocean. In Korea, H. bonnemaisonii has been previously recorded from the southern coast. During a red algal collection at Udo, Jeju Island, Korea, we found a potentially undescribed Haraldiophyllum species and analyzed its morphology and rbcL sequences. Herein we describe a new species, H. udoensis sp. nov., and compare our Udo specimen to similar congeners. This new species is characterized by one or several elliptical blades on a short cylindrical stipe with fibrous roots, blades that are monostromatic except at the base and on reproductive structures, a lack of network and microscopic veins, entire margins, lack of proliferations, growth through many marginal initials, and two distinct tetrasporangia layers. A phylogenetic rbcL sequence analysis demonstrated H. udoensis was distinct from the United Kingdom's H. bonnemaisonii, as well as from other species. Morphological and sequence data indicated a previous misidentification of H. udoensis as the type species H. bonnemaisonii. Based on maximum likelihood analysis, Myriogramme formed a sister clade with H. udoensis, with relatively low bootstrap support.

Activity of Chlorelaa vulgaris Associated by Escherichia coli W3110 on Removal of Total Organic Carbon in Continuous River Water Flow System

  • Kong, Surk-Key;Nakajima Toshiuki
    • ALGAE
    • /
    • v.17 no.3
    • /
    • pp.195-199
    • /
    • 2002
  • We investigated the association of Chlorella vulgaris and E. coli W9110 in removal of total organic carbon with the lab-scaled continuous river water flow system (CRWFS). Artificial wastewater was applied at two levels of organic carbon concentration; 1,335 $mg{\cdot}l^{-1}$ in the treatment (T)-1 and 267 $mg{\cdot}l^{-1}$ in T-2. The highest densities of C. vulgaris were $8.3{\times10^6\;cells{\cdot}ml^{-1}$ in T-1 and $6.9{\times}10^6\;cells{\cdot}ml^{-1}$ in T-2. The maximum densities of E. coli W3110 were $2.0{\times}10^8$ clony forming unit (CFU)${\cdot}ml^{-1}$ in T-1 and $3.9{\times}10^8\;CFU{\cdot}ml^{-1}$ in T-2. The densities increased during the first 11 days in T-q and 4 days in T-2, and decreased rapidly till 35th day, then increased slightly afterwards. This trend was prominent in T-2. It was inplied that wider range of nutrients was required in the growth of heterotrophic bacteria in T-2 than in T-1. The algal biomass should be increased effectively for the successful removal of organic carbon.

Design of In-situ Self-diagnosable Smart Controller for Integrated Algae Monitoring System

  • Lee, Sung Hwa;Mariappan, Vinayagam;Won, Dong Chan;Shin, Jaekwon;Yang, Seungyoun
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.64-69
    • /
    • 2017
  • The rapid growth of algae occurs can induce the algae bloom when nutrients are supplied from anthropogenic sources such as fertilizer, animal waste or sewage in runoff the water currents or upwelling naturally. The algae blooms creates the human health problem in the environment as well as in the water resource managers including hypoxic dead zones and harmful toxins and pose challenges to water treatment systems. The algal blooms in the source water in water treatment systems affects the drinking water taste & odor while clogging or damaging filtration systems and putting a strain on the systems designed to remove algal toxins from the source water. This paper propose the emerging In-Situ self-diagnosable smart algae sensing device with wireless connectivity for smart remote monitoring and control. In this research, we developed the In-Site Algae diagnosable sensing device with wireless sensor network (WSN) connectivity with Optical Biological Sensor and environmental sensor to monitor the water treatment systems. The proposed system emulated in real-time on the water treatment plant and functional evaluation parameters are presented as part of the conceptual proof to the proposed research.

Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge

  • Lee, Sang-Ah;Lee, Nakyeong;Oh, Hee-Mock;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1434-1443
    • /
    • 2019
  • Although chemical oxygen demand (COD) is an important issue for wastewater treatment, COD reduction with microalgae has been less studied compared to nitrogen or phosphorus removal. COD removal is not efficient in conventional wastewater treatment using microalgae, because the algae release organic compounds, thereby finally increasing the COD level. This study focused on enhancing COD removal and meeting the effluent standard for discharge by optimizing sludge inoculation timing, which was an important factor in forming a desirable algae/bacteria consortium for more efficient COD removal and higher biomass productivity. Activated sludge has been added to reduce COD in many studies, but its inoculation was done at the start of cultivation. However, when the sludge was added after 3 days of cultivation, at which point the COD concentration started to increase again, the algal growth and biomass productivity were higher than those of the initial sludge inoculation and control (without sludge). Algal and bacterial cell numbers measured by qPCR were also higher with sludge inoculation at 3 days later. In a semi-continuous cultivation system, a hydraulic retention time of 5 days with sludge inoculation resulted in the highest biomass productivity and N/P removal. This study achieved a further improved COD removal than the conventional microalgal wastewater treatment, by introducing bacteria in activated sludge at optimized timing.

Suggestion for Trophic State Classification of Korean Lakes (우리나라 호소의 영양상태 분류에 관한 제언)

  • Kong, Dongsoo;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.3
    • /
    • pp.248-256
    • /
    • 2019
  • Most of the lakes in Korea are artificial, and their limnological characteristics are significantly different from those of natural lakes in other countries. In this study, the relationship between trophic state parameters was investigated, based on summer average data of the upper layer, in 81 lakes in Korea, 2013-2017. Compared with trends of foreign natural lakes, chlorophyll a (Chl.a) concentration was slightly lower at the same total phosphorus (TP) concentration, and transparency (Secchi depth, SD) was noticeably lower at the same Chl.a concentration. This is because of excessive allochthonous loading of non-algal material during the monsoon period, and the reduction in phosphorus availability to algal growth, by light limitation and short hydraulic residence time. Considering these characteristics, we suggested site-specific thresholds of trophic state classification for Chl.a, TP and SD, based on annual average data at the upper layer of lakes ($3-10{\mu}g\;L^{-1}$ of Chl.a measured by UNESCO method; $13-33{\mu}g\;L^{-1}$ of TP; 1.6-3.2 m of SD for mesotrophic state class, respectively). The threshold value of TP for each trophic state class, corresponded to the upper value of previously reported range, and that of SD was out of the range. We suggested applying only TP and Chl.a in assessment of trophic state of lakes in Korea, excluding SD.

Culture Condition and Growth of Larvae of the Mytilus Coruscus Gould (홍합의 사육조건과 성장)

  • Yoo, Sung Kyoo
    • 한국해양학회지
    • /
    • v.4 no.1
    • /
    • pp.36-48
    • /
    • 1969
  • The larvae of Mytilus coruscus were grown at the room temperature of approximately 15.1C under several different sulture conditions, i.e., salinity, population of the larvae, density and kind of food organisms, etc. (1) The egg of Mytilus coruscus obtained in the laboratory measured about 73.0${\mu}$ in diameter. The embryos gradually developed into larvae up to 179.0${\mu}$ shell length with the shell height of 135.9${\mu}$ even in the absence of the algal food. Beyond this size, however, the growth of larvae was considerably retarded, indicating that the better growth could be expected if the food began to be fed four days after spawning. (2) The larvae began settling upon reaching 281.4${\mu}$ to 310.9${\mu}$ in shell length or 264.3${\mu}$ to 301.9${\mu}$ in shell height. When the shell length reaches 322.6${\mu}$ to 337.1${\mu}$, the shell height also reaches about the same, i.e., 321.5${\mu}$ to 346.2${\mu}$. (3) Daily rate of food consumption was determined by the size of the larvae and the species of the algal food. Regardless of the species of food given, the rage of food consumption remained almost the same until the larva reached the straight-hinge stage, and marked variations were found as the larvae grew larger. Daily rate of food consumption was shown as follow; Chaetoceros calcitrans : Y=2.99167e$\^$0.000018243x$\^$2// Cyclotella nana : Y=3.00324e$\^$0.000015481x$\^$2// Monochrysis lutheri : Y=3.000056e$\^$0.000014485$\^$2// (4) Suitable amount of the food to be given was about five times of the consumed food by Mytilus coruscus. (5) When the numbers of the larvae was higher than ten per milliliter, the growth was significantly retarded. (6) Monochrysis lutheri and Cyclotella nana were much better than Chaetoceros calcitrans as the food of Mytilus coruscus, and even the same food organism showed some difference with the age of the organism. (7) Sea water of higher salinity showed the better result in the growth of the larvae and the water with the specific gravity of 1.020 or below was dangerous for the larvae. (8) The mean growth of the larvae of Mytilus coruscus under lavorable condition was shown as follows: shell length 121.8${\mu}$ to 179.0${\mu}$ : Y=119.18+7.42X 196.7${\mu}$ to 322.6${\mu}$ : Y=203.144+7.687X 322.6${\mu}$ to 985.1${\mu}$ : Y=302.5978+11.8356X shell height 86.3${\mu}$ to 135.9${\mu}$ : Y=86.22+6.40X 158.1${\mu}$ to 321.5${\mu}$ : Y=162.998+10.027X 321.5${\mu}$ to 1,215.4${\mu}$ : Y=309.3701+16.258X Relationships between the shell length and shell height were shown as follows: shell length 121.8${\mu}$ to 179.0 : Y=0.83726X-15.79165 196.7${\mu}$ to 322.6 : Y=1.29909X-100.58610 322.6${\mu}$ to 985.1${\mu}$ : Y=1.3536X-101.6806

  • PDF

Optimization for Scenedesmus obliquus Cultivation: the Effects of Temperature, Light Intensity and pH on Growth and Biochemical Composition

  • Zhang, Yonggang;Ren, Li;Chu, Huaqiang;Zhou, Xuefei;Yao, Tianming;Zhang, Yalei
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.614-620
    • /
    • 2019
  • Microalgae have been explored as potential host species for biofuel production. Environmental factors affect algal growth and cellular composition. The effects of several key environmental factors, such as temperature, light, and pH of the medium on the growth and biochemical composition of Scenedesmus obliquus were investigated in this study. The highest growth rate of microalgae was observed at an optimal temperature of 25℃, 150 μmol/(m2·s) light intensity, and pH 10.0. The biochemical composition analysis revealed that the carbohydrate content decreased at lower (20℃) or higher temperature (35℃), whereas the protein and lipid contents increase at these temperatures. The fluctuation of light intensity significantly affected the contents of protein, carbohydrate, and lipid. The protein levels varied greatly when the pH of the medium was below 7.0. The carbohydrate and lipid contents significantly increased at pH above 7.0.

Effects of Three Microalgae, Tetraselmis suecica, Chaetoceros calcitrans, and Phaeodactylum tricornutum on Larvae and Spat Growth of the Trumpet Shell Charonia sauliae

  • Kang, Kyoung-Ho;Seon, Seung-Cheon;Kim, Jae-Min;Zhuo, Liang Liang;Lim, Sang-Min;Kim, Hyeon-Jeong
    • The Korean Journal of Malacology
    • /
    • v.25 no.1
    • /
    • pp.35-40
    • /
    • 2009
  • The trumpet shell Charonia sauliae is an endangered and valuable species with potential for aquaculture. For artificial propagation of C. sauliae, the effects of three different food microalgae on the development, growth, and survival rate of the larvae and spat were investigated. For the larval feeding experiments, we utilized six microalgae species as food sources, namely Pavlova lutheri, Tetraselmis suecica, Nannochloris oculata, Isochrysis galbana, Chaetoceros calcitrans, and Phaeodactylum tricornutum; for the larval and spat growth and survival experiments, we utilized T. suecica, C. calcitrans, and P. tricornutum. The results showed that the temporal digestion index (TDI) for the veliger larvae was significantly different for C. sauliae fed the different microalgae species (p < 0.05), that the T. suecica, C. calcitrans, and P. tricornutum cultivars were better suited for larval consumption (p < 0.05), and that the growth and survival of the larvae and spat were significantly influenced by food type, specifically P. tricornutum (p < 0.05). Further research is needed to evaluate the effects of other microalgae species, different algal concentrations, and biochemical composition on the growth and survival of C. sauliae.

  • PDF

Effect of micronutritional-element deficienies on the metabolism of Chlorella cells. (I) -On the growth rate, respiation and photosynthesis- (Chlorella 의 물질대사에 미치는 미양원소의 결핍효과 1 (제 1 ) -생 및 광합성 에 관하여-)

  • Lee, Yung-Nok;Chin, Pyung;Sim, Woong-Seop
    • Korean Journal of Microbiology
    • /
    • v.5 no.1
    • /
    • pp.15-19
    • /
    • 1967
  • Chlorella ellipsoidea cells were cultured in an iron, copper, zinc, manganese, molybdenum or boron-free medium. Physiological activities such as growth rate, reproduction, endogenous and glucose respiration, photosynthetic activity and biosythesis of chlorophyll of the micro-element definition cells were measured. It generally, growth rate, respiratory and photosynthetic activities, and biosynthesis of chlorophyll of the micro-element deficient cells decreased more or less, compared with those of the normal cells. The growth of the algal cells in an iron-free medium were retarded severely with the chlorosis, and the photosynthetic activity of the cells decreased remarkably even though the low content of chlorophyll in the cells owing to the iron-deficiency is considered. Therefore, it is deduced that iron takes part in the photosynthetic process itself, possibly by its participation in the photo phosphorylation coupled with electron transport. Respiratory activity of boron-deficient cells showed the most severe decrease whereas those of the molybdenum-deficient cells showed very slight decrease in spite of severe growth retardation.

  • PDF