• Title/Summary/Keyword: Algal blooms

Search Result 245, Processing Time 0.028 seconds

Design Methods and Capacity Analysis of Artificial Circulation Systems in Korean Reservoirs (우리 나라 저수지의 수중 폭기 장치의 설계 방법 및 용량 분석)

  • Seo, Dong-Il;Seog, Kwan-Soo;Lee, Byung-Doo;Jeong, Sang-Gi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.366-376
    • /
    • 2004
  • Use of artificial circulation system has become popular in Korean reservoirs to control algal blooms and subsequent color, taste and odor problems in drinking water. It was found that the most of aeration system in Korean reservoirs are under-designed compared to existing installations in US and Australia. This was especially true for larger reservoirs greater than $5{\times}10^7m^3$ in volume since it is common to install the system in the vicinity of intake areas only. Consequently, successful cases of artificial circulation systems operations are limited to few small reservoirs less than $1{\times}10^7m^3$. It is suggested that the design methods need to be developed considering physical characteristics and water quality kinetics inside of reservoirs. Also operation methods of artificial circulation systems need to be established considering the water quality dynamics, stratification and morphological characteristics of reservoirs. Finally, it is suggested to maintain comprehensive and long term monitoring programs to validate the application of artificial circulation system in reservoirs.

Impacts of Climate Change on Water Crisis and Formation of Green Algal Blooms in Vietnam

  • Thriveni, Thenepalli;Lee, Namju;Nam, Gnu;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.68-75
    • /
    • 2017
  • Global warming affects water supply and water resources throughout the world. In many countries, climate change affects significantly on the fresh water resources. Vietnam is exposed mainly, to landslides and floods triggered by tropical storms and monsoon rains, although storm surge, whirlwind, river bank and coastal line erosion, hail rain. In addition to the prevalent drought, there are many major water challenges, including water availability, stress, scarcity and accessibility, because of poor resource management. Fast growth of urbanization, industrialization and population growth, agricultural activities and climate change cause heavy pressure on water quality. Both domestic and industrial wastewater, as well as storm water shares the same drainage. The common facilities for wastewater treatment are not available. Therefore, wastewater is treated only superficially and then discharged directly into rivers and lakes causing serious pollution of surface water environment. In this paper, we reported the severe water crisis and massive green algal blooms formation in Vietnam rivers and lakes. This is the biggest evidence of climate change variations in Vietnam.

The Comparison of Two Strains of Fibrocapsa japonica (Raphidophyceae) in New Zealand and Japan

  • Cho Eun Seob;Rhodes Lesley L.;Kim Hak Gyoon
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.1
    • /
    • pp.58-65
    • /
    • 1999
  • Fibrocapsa japonica (Raphidophyceae) is regarded as a harmful algal bloom organism in Japanese waters, where it has been linked to fish kills. Fibrocapsa is a common species in New Zealand coastal waters, particularly in the Hauraki Gulf, where it has regularly bloomed in the spring under E1 Nino climate conditions for the past six years. The New Zealand isolate had 1.4 times more total polyunsaturated acids than the Japanese isolate under the same growth conditions, suggesting that eicosapentaenoic acid in particular coold be used as a discriminating chemotaxonomic marker. The molecular probes tested showed no differential binding of the raphidophytes to lectins, but oligonucleotide probes targeted F. japonica ribosomal RNA bound specifically to both isolates. Neither strain was toxic in mouse or neuroblastoma bioassays. There is no evidence that the New Zealand F. japonica isolates investigated to date produce ichthyotoxins.

  • PDF

The Effect of Current and Temperature of a Reservoir by the Simulation of Dam Outflow (댐 방류조건에 따른 저수지 유속과 수온 영향)

  • Yu, Soon-ju;Ha, Sung-ryong;Jung, Dong-il
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1060-1067
    • /
    • 2006
  • Water quality in the Daecheong reservoir has been deteriorated by algal bloom due to nutrient supply from the upstream of the Daecheong reservoir after heavy rainfall. Algal bloom is propagated from eutrophicated tributary into the main body of the reservoir according to the hydrological conditions. This study is aimed to estimate the water current and temperature effect by the simulation of dam spill flow control using water quality model, CE-QUAL-W2 in 2003. Water current was resulted in nutrient transport from upstream of main reservoir and nutrients were delivered up to downstream by fast water velocity. Algal blooms occurred in stagnate zone of reservoir downstream as the current of downstream was retarded according to dam outflow control. Consequently water balance in stagnate zone triggered a rise of water temperature in summer. It affected algal bloom in the embayment of the reservoir. The simulation result by outflow control scenarios showed that spill flow augmentation induced in water body instability of stagnate zone so that water temperature declined. It could be suggested that outflow control minimize algal bloom in the downstream in the flooding season as long as water elevation level is maintained properly.

Methods for sampling and analysis of marine microalgae in ship ballast tanks: a case study from Tampa Bay, Florida, USA

  • Garrett, Matthew J.;Wolny, Jennifer L.;Williams, B. James;Dirks, Michael D.;Brame, Julie A.;Richardson, R. William
    • ALGAE
    • /
    • v.26 no.2
    • /
    • pp.181-192
    • /
    • 2011
  • Ballasting and deballasting of shipping vessels in foreign ports have been reported worldwide as a vector of introduction of non-native aquatic plants and animals. Recently, attention has turned to ballast water as a factor in the global increase of harmful algal blooms (HABs). Many species of microalgae, including harmful dinoflagellate species, can remain viable for months in dormant benthic stages (cysts) in ballast sediments. Over a period of four years, we surveyed ballast water and sediment of ships docked in two ports of Tampa Bay, Florida, USA. Sampling conditions encountered while sampling ballast water and sediments were vastly different between vessels. Since no single sample collection protocol could be applied, existing methods for sampling ballast were modified and new methods created to reduce time and labor necessary for the collection of high-quality, qualitative samples. Five methods were refined or developed, including one that allowed for a directed intake of water and sediments. From 63 samples, 1,633 dinoflagellate cysts and cyst-like cells were recovered. A native, cyst-forming, harmful dinoflagellate, Alexandrium balechii (Steidinger) F. J. R. Taylor, was collected, isolated, and cultured from the same vessel six months apart, indicating that ships exchanging ballast water in Tampa Bay have the potential to transport HAB species to other ports with similar ecologies, exposing them to non-native, potentially toxic blooms.

Input output transfer function model development for a prediction of cyanobacteria cell number in Youngsan River (영산강 수계에서 남조류 세포수 모의를 위한 입출력 모형의 개발)

  • Lee, Eunhyung;Kim, Kyunghyun;Kim, Sanghyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.789-798
    • /
    • 2016
  • Frequent algal blooms at major river systems in Korea have been serious social and environmental problems. Especially, the appearance of cyanobacteria with toxic materials is a threat to secure a safe drinking water. In order to model the behaviour of cyanobacteria cell number, an exclusive causality analysis using prewhitening technique was introduced to delineate effective parameters to predict the cell numbers of cyanobacteria in Seungchon Weir and Juksan Weir along Youngsan river system. Both input and output transfer function models were obtained to explain temporal variation of cyanobacteria cell number. A threshold behaviour of water temperature was implemented into the model development to consider winter characteristic of cyanobacteria. The implementation of water temperature threshold into the model structure improves the predictability in simulation. Even though the input output transfer model cannot completely explained all blooms of cyanobacteria, the simple structure of model provide a feasibility in application which can be important in practical aspect.

Lessons from the Sea : Genome Sequence of an Algicidal Marine Bacterium Hahella chehuensis (적조 살상 해양 미생물 Hahella chejuensis의 유전체 구조)

  • Jeong Hae-Young;Yoon Sung-Ho;Lee Hong-Kum;Oh Tae-Kwang;Kim Ji-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Harmful algal blooms (HABs or red tides), caused by uncontrolled proliferation of marine phytoplankton, impose a severe environmental problem and occasionally threaten even public health. We sequenced the genome of an EPS-producing marine bacterium Hahella chejuensis that produces a red pigment with the lytic activity against red-tide dinoflagellates at parts per billion level. H. chejuensis is the first sequenced species among algicidal bacteria as well as in the order Oceanospirillales. Sequence analysis indicated a distant relationship to the Pseudomonas group. Its 7.2-megabase genome encodes basic metabolic functions and a large number of proteins involved in regulation or transport. One of the prominent features of the H. chejuensis genome is a multitude of genes of functional equivalence or of possible foreign origin. A significant proportion (${\sim}23%$) of the genome appears to be of foreign origin, i.e. genomic islands, which encode genes for biosynthesis of exopolysaccharides, toxins, polyketides or non-ribosomal peptides, iron utilization, motility, type III protein secretion and pigment production. Molecular structure of the algicidal pigment was determined to be prodigiosin by LC-ESI-MS/MS and NMR analyses. The genomics-based research on H. chejuensis opens a new possibility for controlling algal blooms by exploiting biotic interactions in the natural environment and provides a model in marine bioprospecting through genome research.

Toxic Algal Bloom Caused by Dinoflagellate Alexandrium tamarense in Chindong Bay, Korea

  • Yoo Jong Su;Fukuyo Yasuwo;Cheun Byeungsoo;Lee Sam Geun;Kim Hak Gyoon
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Monospecific red tide by a toxic dinoflagellate belonging to the genus Alexandrium occurred at Chindong Bay in the southern coast of Korea and continued from April 6th to 15th in 1997. The ratio of its cell number to total phytoplankton cell number was much higher than $95\%$. This organism was identified as Alexandrium tamarense, although slight morphological differences were found comparing to the original and successive descriptions of the species. We found neither anterior nor posterior attachment pores in these cells of the bloom population. The occurrence of red tide caused by A. tamarense was first reported in Korea. Its plate formula is Po, Pc, 4', 6"c, 8s, 5"' and 2"". Thecal plates are thin with pore-like ornamentation. In those plates, the anterior part of the first apical plate (1') is narrower and its posterior end has sometimes a block-like accessory, but this variation was considered within the range of the morphological variability of this taxon. The cell density during the red tide exhibited a wide range of variation by the depth of water column, ranging from $2\times10^6$ cells$l^{-1}$ to $5\times10^6$ cells·$l^{-1}$. Water temperature varied from 11.8 to $12.3^{\circ}C$. Toxicity of A. tamarense during red tide was measured as $8.8\times10^5$. $MU\;\cdot\;cell^{-1}$ by mouse bioassay.

  • PDF

Algal Bloom and Distribution of Prorocentrum Population in Masan-Jinhae Bay (마산-진해만에서 Prorocentrum 개체군의 발생양상과 분포)

  • 최만영;곽승국;조경제
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.4
    • /
    • pp.447-456
    • /
    • 2000
  • Genus Prorocentrum of dinoflagellate has been known as representative causative algae of red tide in Masan-Jinhae Bay. Prorocentrum populations- P. dentatum Stein, p. micans Ehrenberg, P. minimum (Pavillard) Schiller and P. triestinum Schiller- were monitored from January 1990 to August 1997, Prorocentrum populations usually have bloomed during the water stratification periods from June to August. Water temperature ranged from 24$^{\circ}C$ to 28$^{\circ}C$ and salinity from 24$\textperthousand$ to 34$\textperthousand$ during the Prorocentrum blooms. Bloom magnitude of Prorooentrum populations gradually increased from offshore to inshore area of coastal embayment and this populations tended to concentrate from surface to 2.5m depth. Prorocentrum algal blooms have become more frequent and intense than those of 1980s and early 1990s. P. minimum was the most persistent species in terms of bloom frequency and cellular abundance.

  • PDF

Causes and Overcoming of the Algae Excess in a Dam Water - Based on the Data of Water Quality Analysis of Mulgum Area - (댐호화된 하천의 조류 과다 발생원인과 해소 방안 - 낙동강 물금 지역의 수질 분석 데이터를 중심으로 -)

  • Yang, Shi-Chun;Xia, Tian-Tian;Kang, Tai-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.4
    • /
    • pp.1-13
    • /
    • 2017
  • The purpose of this study is to analyze a term of decade of water quality data of the Mulgum intake station on the Nakdong river(dam) to find the cause of algal blooms and to set an alternative to prevent artificial lake water pollution. Our study shows that water quality changes have regular periodic regularity and there was a certain correlation between specific analytical items. According to the analysis results of each factor, the decline in precipitation was not the main reason for algal blooms. TP concentration had a slight effect on Chl-a concentration but was not a limiting nutrient of a bloom. TN concentration had a strong correlation with Chl-a and strongly negative correlation with temperature, but was not a bloom's limiting nutrient, and was only a dependent variable. As the temperature was negatively correlated with the Chl-a concentration, it is found that the aspect of the ecological influence of the temperature was the most important factor of the phytoplankton concentration change. The N/P ratio lies under a power function with a high degree of reliability by the TP concentration, and the phenomenon appeared to be the same as the results of two other comparative areas. This result confirms that TN is dependent on TP and the biota in the lake that TN is a dependent variable whose concentration is determined by TP it. In conclusion, the increase in lake bloom is the result of a food chain change, and it is necessary to control the ecosystem by the food chain in the lake in order to reduce the lake's bloom. In particular, it is important to keep the benthic ecosystem as wide as possible in the aerobic state.