• Title/Summary/Keyword: Algal Toxicity

Search Result 43, Processing Time 0.037 seconds

Aquatic Toxicity Assessment of Phosphate Compounds

  • Kim, Eunju;Yoo, Sunkyoung;Ro, Hee-Young;Han, Hye-Jin;Baek, Yong-Wook;Eom, Ig-Chun;Kim, Hyun-Mi;Kim, Pilje;Choi, Kyunghee
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.2.1-2.7
    • /
    • 2013
  • Objectives Tricalcium phosphate and calcium hydrogenorthophosphate are high production volume chemicals, mainly used as foodstuff additives, pharmaceuticals, lubricants, synthetic resin, and disinfectants. Phosphate has the potential to cause increased algal growth leading to eutrophication in the aquatic environment. However, there is no adequate information available on risk assessment or acute and chronic toxicity. The aim of this research is to evaluate the toxic potential of phosphate compounds in the aquatic environment. Methods An aquatic toxicity test of phosphate was conducted, and its physico-chemical properties were obtained from a database recommended in the Organization for Economic Cooperation and Development (OECD) guidance manual. An ecotoxicity test using fish, Daphnia, and algae was conducted by the good laboratory practice facility according to the OECD TG guidelines for testing of chemicals, to secure reliable data. Results The results of the ecotoxicity tests of tricalcium phosphate and calcium hydrogenorthophosphate are as follows: In an acute toxicity test with Oryzias latipes, 96 hr 50% lethal concentration ($LC_{50}$) was >100 (measured:>2.14) mg/L and >100 (measured: >13.5) mg/L, respectively. In the Daphnia test, 48 hr 50% effective concentration ($EC_{50}$) was >100 (measured: >5.35) mg/L and >100 (measured: >2.9) mg/L, respectively. In a growth inhibition test with Pseudokirchneriella subcapitata, 72 hr $EC_{50}$ was >100 (measured: >1.56) mg/L and >100 (measured: >4.4) mg/L, respectively. Conclusions Based on the results of the ecotoxicity test of phosphate using fish, Daphnia, and algae, $L(E)C_{50}$ was above 100 mg/L (nominal), indicating no toxicity. In general, the total phosphorus concentration including phosphate in rivers and lakes reaches levels of several ppm, suggesting that phosphate has no toxic effects. However, excessive inflow of phosphate into aquatic ecosystems has the potential to cause eutrophication due to algal growth.

Comparison of Short-Term Toxicity Tests Based on Feeding Behavior and Temperature Control by Ceriodaphnia dubia (Ceriodaphnia dubia의 먹이섭생 기작과 온도조절에 근거한 급성독성조사법의 비교)

  • Park, Jong-Ho;Lee, Sang-Ill;Cho, Young-Oak
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.48-54
    • /
    • 2004
  • Two methods, a Ceriodaphnia algal uptake suppression test (CAUST) and a new toxicity test based on temperature control (TTBTC) which are based on feeding behaviour and temperature control, respectively, were developed and compared for the adoption as the better methodology for short-term toxicity screening. As previously published by Lee et aI., (1997), the CAUST method is based on the feeding behaviour of C. dubia and requires as little as 1 hour of contact time between C. dubia neonates and toxicant. However, even though CAUST requires only 1 hour of contact time, this method still take many hours for the preparation and measurement. Before the test starts, neonate digestive tracts were cleared by feeding yeast to the daphnids, Neonates were then exposed to toxicant, followed by addition of Scenedesmus subspiatus into the bioassay vessels. Daphnids were examined under the bright-field microscope with the presence of algae (indicated by a green colored digestive tract) or the absence of algae. Uptake indicated no toxic effect, whereas, absence of uptake indicated toxic inhibition. Unlike CAUST, the newly developed method (TTBTC) is based on just temperature control for the toxicity test of C. dubia. Initially, neonates are exposed to toxicants while the temperature of water bath containing media increased to $35.5^{\circ}C$. After 1.25 hour of contact time, the number of the daphnids, either live (no toxic effect) or dead (toxic effect), is counted without the aid of any instrument. In both methods, median effective concentrations ($EC_{50}$ values) were computed based on the results over a range of dosed toxicant concentrations. It showed that TTBTC was as sensitive as the standard 48-hour acute bioassay and CAUST. TTBTC and CAUST were much more sensitive than the I-hour I.Q. test and 30-minute Microtox. This study indicates that TTBTC is an easier and more rapid toxicity test than the standard 48-hour acute bioassay and even CAUST.

Ecotoxicological Effects of NaDCC injection method in Ballast Water Management system on Marine Environments (NaDCC 주입 선박평형수 처리기술의 해양생태위해성에 대한 연구)

  • Kim, Tae won;Moon, Chang Ho;Kim, Young Ryun;Son, Min Ho
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2017.11a
    • /
    • pp.236-236
    • /
    • 2017
  • Effluent treated by an NaDCC injection method in Ballast water management system (BWMS) contains reactive chlorine species and disinfection by-products (DBPs). In this study, we conducted whole effluent toxicity (WET) testing and ecological risk assessment (ERA) to investigate its ecotoxicological effects on marine environment. WET testing was carried out for four marine pelagic and freshwater organisms, i.e., diatom Skeletonema costatum, Navicula pellicuosa, chlorophyta Dunaliella tertiolecta, Pseudokirchneriella subcapitata, rotifer Brachionus plicatilis, Brachionus calyciflorus and fish Cyprinodon variegatus, Pimephales promelas. The biological toxicity test revealed that algae was the only biota that showed apparent toxicity to the effluent; it showed no observed effect concentration (NOEC), lowest observable effect concentration (LOEC) and effect concentration of 50% (EC50) values of 25-50%, 50-100% and >100%, respectively, at three water condition, but did not show any significant toxicities on other biota. Meanwhile, chemical analysis revealed that the BWMS effluent contained total residual oxidants (TROs) below $0.03{\mu}g/L$ and a total of 25 DBPs such as bromate, volatile halogenated organic compounds (VOCs), halogenated acetonitriles (HANs), halogenated acetic acids (HAAs), chloropicrin and Isocyanuric acid. Based on ERA, the 25 DBPs were not considered to have persistency, bioaccumulation and toxicity (PBT) properties. The ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) of the other DBPs did not exceed 1 for General harbor environment. However, four substances (Isocyanuric acid, Tribromomethane, Chloropicrin and Monochloroacetic acid) were exceed 1 for Nearship environment. But observed toxicity in the test water on algal growth inhibition would be mitigated by normal dilution factor of 5 applied for nearship exposure. Thus, our results of WET testing and ERA showed that the BWMS effluent treated by NaDCC injection method would have no adverse impacts on marine environment.

  • PDF

Potential of Marine Ciliate Mesodinium rubrum as a Standard Test Species for Marine Ecotoxicological Study (해양생태독성 평가용 표준시험생물로서 섬모충류 Mesodinium rubrum에 대한 연구)

  • An, Kyoung-Ho;Park, Gyung-Soo;Lee, Seung-Min
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1087-1093
    • /
    • 2011
  • The mixotrophic marine ciliate Mesodinium rubrum possesses a highly modified algal endosymbiont as a nutrition source for the species. Accordingly, we assumed that the species can reflect the ecotoxicity on marine producer (as phytoplankton) and consumer (as zooplankton) both. A series of experiments were conducted to identify the potential of the species as a standard test species for marine ecotoxicological study. The comparison of species sensitivity on reference toxic materials was made using potassium dichromate for phytoplankton and copper chloride for zooplankton. The ciliate revealed the highest sensitivity on both reference materials among the seven test species including phytoplankton, benthic copepod and rotifer species. The toxicity end point of the species was 72hr-$EC_{50}$=1.52 mg/L (as potassium dichromate) estimated by population growth inhibition (PGI), which is more sensitive than the most sensitive phytoplankton Skeletonema costatum (72hr-$EC_{50}$=3.05 mg/L). As comparison to rotifer, it also revealed higher sensitivity on copper chloride; 72hr-$EC_{50}$=0.38 mg/L for ciliate and 48hr-$EC_{50}$=0.48 mg/L for rotifer. Also, the elutriate toxicity test of various ocean disposal wastes were conducted to identify the potential of ciliate toxicity test application using industrial waste sludges. The toxicity of leather processing waste sludge was highest on the ciliate, followed by dyeing waste sludge and dye production waste sludge as an increasing order of toxicity. 72h-$EC_{50}$ of ciliate PGI test was 1.83% and that of S. costatum 3.84% for leather waste sludge which showed highest toxicity. The toxicity test results also revealed that the highest sensitivity was observed on ciliate species on ocean disposed sludge wastes. Also, ciliate toxicity test well discriminated the degree of toxicity between sludge sources; 72h-$EC_{50}$ values were 1.83% for leather processing waste sludge, 16.75% for dye production waste sludge and 27.75% for textile production waste sludge. Even the laboratory culture methods of the species were not generally established yet, the species has high potential as the standard test species for marine toxicity test in terms of the dual reflection of phyto- and zooplankton toxicity from single test, sensitivity and test replicability.

Effect of high free ammonia concentration on microalgal growth and substrate uptake (폐수 내 고농도 free ammonia(FA)가 미세조류의 성장 및 기질제거에 미치는 영향 평가)

  • Kim, Eun-Ji;Cho, Jae Hyung;Noh, Kyung Ho;Nam, guisook;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.715-723
    • /
    • 2016
  • This study investigated the effect of high concentration of free ammonia on microalgal growth and substrate removal by applying real wastewater nitrogen ratio. To test of this, the conditions of free ammonia 1, 3, 6, 9, 12, 15 mg-N/L are compared. After 3 days of incubation, algal growth of Chlorella vulgaris and carbon removal rate are respectively lower in the reactors of FA 12, 15 mg-N/L compared to the others. This indicates that the high concentration of free ammonia, in this case, above 12 mg-N/L, has negative effect on algal growth and metabolic activity. Also, high concentration of free ammonia causes the proton imbalance, ammonium accumulation in algae and has toxicity for these reasons. So, we have to consider free ammonia in applying the microalgae to wastewater treatment system by the way of diluting wastewater or controlling pH and temperature.

Toxic Algal Bloom Caused by Dinoflagellate Alexandrium tamarense in Chindong Bay, Korea

  • Yoo Jong Su;Fukuyo Yasuwo;Cheun Byeungsoo;Lee Sam Geun;Kim Hak Gyoon
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Monospecific red tide by a toxic dinoflagellate belonging to the genus Alexandrium occurred at Chindong Bay in the southern coast of Korea and continued from April 6th to 15th in 1997. The ratio of its cell number to total phytoplankton cell number was much higher than $95\%$. This organism was identified as Alexandrium tamarense, although slight morphological differences were found comparing to the original and successive descriptions of the species. We found neither anterior nor posterior attachment pores in these cells of the bloom population. The occurrence of red tide caused by A. tamarense was first reported in Korea. Its plate formula is Po, Pc, 4', 6"c, 8s, 5"' and 2"". Thecal plates are thin with pore-like ornamentation. In those plates, the anterior part of the first apical plate (1') is narrower and its posterior end has sometimes a block-like accessory, but this variation was considered within the range of the morphological variability of this taxon. The cell density during the red tide exhibited a wide range of variation by the depth of water column, ranging from $2\times10^6$ cells$l^{-1}$ to $5\times10^6$ cells·$l^{-1}$. Water temperature varied from 11.8 to $12.3^{\circ}C$. Toxicity of A. tamarense during red tide was measured as $8.8\times10^5$. $MU\;\cdot\;cell^{-1}$ by mouse bioassay.

  • PDF

Filtration Rates of Juvenile Purple Clam, Saxidomus purpuratus (Sowerby) Feeding on Red Tide Dinoflagellates

  • Lee, Chang-Hoon;Moon, Seong-Dae;Sung, Chan-Gyoung
    • The Korean Journal of Malacology
    • /
    • v.28 no.4
    • /
    • pp.349-359
    • /
    • 2012
  • The purpose of this study is to compare the clearance rate (CR) and intake rate (IR) of juvenile purple clam, Saxidomus purpuratus when feeding on different unialgal diet of red tide dinoflagellates (RTDs), and to know what is the most important cell characteristic of RTDs to cause the differences in feeding parameters. Experiments were performed to measure the CR and IR of juvenile S. purpuratus as a function of algal concentration when food was either the standard food, Isochrysis galbana or one of 9 RTDs. Patterns of CR with increasing algal concentration were similar among different RTDs. The highest $C_{max}$ was observed when S. purpuratus was feeding on A. affine, while the lowest on C. polykrikoides. The patterns of IR with increasing algal concentration were also similar among different RTDs. However, there were great differences in the maximum value of IR ($I_{max}$) among different RTDs. The highest $I_{max}$ was observed when S. purpuratus was feeding on A. carterae, while the lowest on G. catenatum. Some RTDs similar in size showed different $C_{max}$. Other RTDs different in size showed similar $I_{max}$. Life form of each RTD affected significantly the $I_{max}$, which was higher for single-celled RTDs than chain-forming RTDs. There were no significant differences in feeding parameters between toxic and nontoxic RTDs. Moreover, a toxic dinoflagellate, A. carterae recorded the highest $I_{max}$ among RTDs. The most important characteristic of RTD as a factor affecting the feeding rate of S. purpuratus was life form, not size or toxicity of RTD species.

Inhibition of Growth and Microcystin Toxicity, and Characterization of Algicidal Substances from Lactobacillus graminis against Microcystis aeruginosa (Microcystis aeruginosa에 대한 Lactobacillus graminis의 성장 억제능, microcystin 분해 및 살조 물질의 특성)

  • Joo, Jae-Hyoung;Park, Bum Soo;Lee, Eun-Seon;Kang, Yoon-Ho;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.176-186
    • /
    • 2016
  • For several decades, lactic acid bacterium (Lactobacillus graminis: LAB) has been generally recognized as safe. To develop the pan-environmental bio-control agent, algicidal activity of the live LAB cell and its culture filtrate (CF) was examined against Microcystis aeruginosa. LAB cells perfectly lysed M. aeruginosa within 3 days, while the CF had a less effect than the live cells, approximately 78% inhibition of algal growth during a same culture period. The concentration of microcystin in alone culture of M. aeruginosa was $7.1{\mu}gL^{-1}$, but gradually increased and leach $158.5{\mu}gL^{-1}$ on 10 days. However, LAB cells clearly decreased the microcystin by $10.3{\mu}gL^{-1}$ in the same period, approximately 93.5%. CF of LAB showed a strong algicidal activity over 75% between pH 2-7, 91.3% by the treatment of proteinase K, 87.8% by below 3 kDa in particle size, and 75.3% by heat treatment, respectively. Of five solvents, fractions of CF passed through solvents diethyl ether and ethyl acetate showed an obvious algicidal activity in the algal-lawn test. Among 5 fractions purified by silica-gel TLC plate, two spots showed a most strong removal activity on M. aeruginosa. Another analysis of GC indicate that CF contained six representative fatty acids. Even though most of these substance have been known as an anti-algal substance against M. aeruginosa, oleic acid is the most effective. These results suggested that the culture filtrate or specific substances, like a fatty acids, in comparison with live L. graminis can be a successful and eco-friendly agent to control Microcystis bloom.

Evaluation of Toxicity for Commercial Red Mud Pellets Using Pseudokirchneriella subcapitata and Daphnia magna

  • Lee, Saeromi;Ahn, Chang Hyuk;Park, Jae Roh;Lee, Sooji;Lee, Inju;Joo, Jin Chul
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.345-350
    • /
    • 2015
  • The toxicity of red mud (RM) pellets for water purification was evaluated using Pseudokirchneriella subcapitata and Daphnia magna in a lab-scale experiment. According to the algal growth inhibition test, both specific growth rates and relative growth rates of P. subcapitata decreased, and the growth inhibition rates increased ($R^2=0.97$, p<0.001) as the concentration of RM pellets in the aqueous solution increased (>1.6 g/L). Also, based on the acute toxicity evaluation test on D. magna, toxic unit (TU) values ranged between 0.00 and 2.83, and increased with an increase in the concentration of RM pellets in the aqueous solution. A correlation analysis indicated that the pH of RM pellets was statistically correlated with TU values ($R^2=0.77$, p=0.02). The environmental implication from this study is that the concentration of RM pellets in an aqueous solution needs to be lower than 4.4 g/L to keep the maximum permissible TU value less than 1.0.

Role of Proline Accumulation in Response to Toxic Copper in Microcystis aeruginosa

  • Park, So-Hyun;Hong, Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.189-196
    • /
    • 2001
  • The blue green alga, Microcystis aeruginosa, was found to accumulate proline under the stressful concentration of cupric ions. The changes of proline level in Microcystis aeruginosa in response to copper(Cu) have been monitored and the function of the accumulated proline was studied with respect to its effect on Cu uptake. Exposure of Microcystis aeruginosa elevated concentrations of Cu led to accumulation of fee proline depending on the concentrations of the metal in the external medium. The greater the toxicity or accumulation of the metal, the higher the amount of proline in algal cells were found. When proline was exogenously supplied prior to Cu treatment, the absorption of Cu was markedly reduced. When exogenous proline was supplied after Cu treatment, it resulted in a remarkable desorption of the adsorbed Cu immediately after the addition of proline. Pretreatment of Microcystis aeruginosa with proline counteracted with metal-induced lipid peroxidation. The results of the present study showed a protective elect of proline on metal toxicity through inhibition of lipid peroxidation and suggested that the accumulation of proline may be related to the tolerance mechanism for dealing with Cu stress.

  • PDF