• Title/Summary/Keyword: Alexandroff spaces

Search Result 7, Processing Time 0.022 seconds

λ*-CLOSED SETS AND NEW SEPARATION AXIOMS IN ALEXANDROFF SPACES

  • Banerjee, Amar Kumar;Pal, Jagannath
    • Korean Journal of Mathematics
    • /
    • v.26 no.4
    • /
    • pp.709-727
    • /
    • 2018
  • Here we have studied the ideas of $g^*$-closed sets, $g{\bigwedge}_{{\tau}^-}$ sets and ${\lambda}^*$-closed sets and investigate some of their properties in the spaces of A. D. Alexandroff [1]. We have also studied some separation axioms like $T_{\frac{\omega}{4}}$, $T_{\frac{3\omega}{8}}$, $T_{\omega}$ in Alexandroff spaces and also have introduced a new separation axiom namely $T_{\frac{5\omega}{8}}$ axiom in this space.

On The Reflection And Coreflection

  • Park, Bae-Hun
    • The Mathematical Education
    • /
    • v.16 no.2
    • /
    • pp.22-26
    • /
    • 1978
  • It is shown that a map having an extension to an open map between the Alex-androff base compactifications of its domain and range has a unique such extension. J.S. Wasileski has introduced the Alexandroff base compactifications of Hausdorff spaces endowed with Alexandroff bases. We introduce a definition of morphism between such spaces to obtain a category which we denote by ABC. We prove that the Alexandroff base compactification on objects can be extended to a functor on ABC and that the compact objects give an epireflective subcategory of ABC. For each topological space X there exists a completely regular space $\alpha$X and a surjective continuous function $\alpha$$_{x}$ : Xlongrightarrow$\alpha$X such that for each completely regular space Z and g$\in$C (X, Z) there exists a unique g$\in$C($\alpha$X, 2) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\alpha$$_{x}$, $\alpha$X) is called a completely regularization of X. Let TOP be the category of topological spaces and continuous functions and let CREG be the category of completely regular spaces and continuous functions. The functor $\alpha$ : TOPlongrightarrowCREG is a completely regular reflection functor. For each topological space X there exists a compact Hausdorff space $\beta$X and a dense continuous function $\beta$x : Xlongrightarrow$\beta$X such that for each compact Hausdorff space K and g$\in$C (X, K) there exists a uniqueg$\in$C($\beta$X, K) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\beta$$_{x}$, $\beta$X) is called a Stone-Cech compactification of X. Let COMPT$_2$ be the category of compact Hausdorff spaces and continuous functions. The functor $\beta$ : TOPlongrightarrowCOMPT$_2$ is a compact reflection functor. For each topological space X there exists a realcompact space (equation omitted) and a dense continuous function (equation omitted) such that for each realcompact space Z and g$\in$C(X, 2) there exists a unique g$\in$C (equation omitted) with g=g$^{\circ}$(equation omitted). Such a pair (equation omitted) is called a Hewitt's realcompactification of X. Let RCOM be the category of realcompact spaces and continuous functions. The functor (equation omitted) : TOPlongrightarrowRCOM is a realcompact refection functor. In [2], D. Harris established the existence of a category of spaces and maps on which the Wallman compactification is an epirefiective functor. H. L. Bentley and S. A. Naimpally [1] generalized the result of Harris concerning the functorial properties of the Wallman compactification of a T$_1$-space. J. S. Wasileski [5] constructed a new compactification called Alexandroff base compactification. In order to fix our notations and for the sake of convenience. we begin with recalling reflection and Alexandroff base compactification.

  • PDF

ARRANGEMENT OF ELEMENTS OF LOCALLY FINITE TOPOLOGICAL SPACES UP TO AN ALF-HOMEOMORPHISM

  • Han, Sang-Eon;Chun, Woo-Jik
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.617-628
    • /
    • 2011
  • In relation to the classification of finite topological spaces the paper [17] studied various properties of finite topological spaces. Indeed, the study of future internet system can be very related to that of locally finite topological spaces with some order structures such as preorder, partial order, pretopology, Alexandroff topological structure and so forth. The paper generalizes the results from [17] so that the paper can enlarge topological and homotopic properties suggested in the category of finite topological spaces into those in the category of locally finite topological spaces including ALF spaces.

순서와 위상구조의 관계

  • 홍성사;홍영희
    • Journal for History of Mathematics
    • /
    • v.10 no.1
    • /
    • pp.19-32
    • /
    • 1997
  • This paper deals with the relationship between the order structure and topological structure in the historical point of view. We first investigate how the order structure has developed along with the set theory and logic in the second half of the nineteenth century. After the general topology has emerged in the beginning of the twentieth century, two disciplines of the order theory and topology give each other a great deal of effect for their development via various dualities, compactifications by maximal filter spaces and Alexandroff's specialization order, which form eventually a fundamental setting for the development of the category theory or functor theory.

  • PDF

ELEMENTS OF THE KKM THEORY FOR GENERALIZED CONVEX SPACE

  • Park, Se-Hei
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.1-28
    • /
    • 2000
  • In the present paper, we introduce fundamental results in the KKM theory for G-convex spaces which are equivalent to the Brouwer theorem, the Sperner lemma, and the KKM theorem. Those results are all abstract versions of known corresponding ones for convex subsets of topological vector spaces. Some earlier applications of those results are indicated. Finally, We give a new proof of the Himmelberg fixed point theorem and G-convex space versions of the von Neumann type minimax theorem and the Nash equilibrium theorem as typical examples of applications of our theory.

STUDY ON TOPOLOGICAL SPACES WITH THE SEMI-T½ SEPARATION AXIOM

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.707-716
    • /
    • 2013
  • The present paper consists of two parts. Since the recent paper [4] proved that an Alexandroff $T_0$-space is a semi-$T_{\frac{1}{2}}$-space, the first part studies semi-open and semi-closed structures of the Khalimsky nD space. The second one focuses on the study of a relation between the LS-property of ($SC^{n_1,l_1}_{k_1}{\times}SC^{n_2,l_2}_{k_2}$, k) relative to the simple closed $k_i$-curves $SC^{n_i,l_i}_{k_i}$, $i{\in}\{1,2\}$ and its normal k-adjacency. In addition, the present paper points out that the main theorems of Boxer and Karaca's paper [3] such as Theorems 4.4 and 4.7 of [3] cannot be new assertions. Indeed, instead they should be attributed to Theorems 4.3 and 4.5, and Example 4.6 of [10].