REMARKS ON ABSOLUTELY STAR-LINDELÖF SPACES

YAN-KUI SONG

ABSTRACT. Vaughan proved that if X is countably compact, then the Alexandroff duplicate A(X) is acc. In this note, we give an example to show that the result can not be generalized to star-Lindelöf spaces. Moreover, we give a positive result.

1. Introduction

By a space, we mean a topological space. Let us recall that a space X is countably compact if every countable open cover of X has a finite subcover. Matveev defined in [5] a space X to be absolutely countably compact (=acc) if for every open cover \mathcal{U} of X and every dense subspace D of X, there exists a finite subset F of D such that $St(F,\mathcal{U}) = X$, where $St(F,\mathcal{U}) = \bigcup \{U \in \mathcal{U} : U \cap F \neq \emptyset\}$. He proved that every Hausdorff acc space is countably compact.

Matveev defined in [6] a space X to be star-Lindelöf if for every open cover \mathcal{U} of X, there exists a countable subset F of X such that $St(F,\mathcal{U}) = X$. It is clear that every separable space is star-Lindelöf.

In [2], a star-Lindelöf space is called * Lindelöf; In [3], a star-Lindelöf space is called strongly star-Lindelöf.

Bonanzinga defined in [1] a space X to be absolutely star-Lindelöf if for every open cover \mathcal{U} of X and every dense subset D of X, there exists a countable subset F of D such that $St(F,\mathcal{U}) = X$.

From the above definition, it is not difficult to see that every acc space is absolutely star-Lindelöf and every absolutely star-Lindelöf space is star-Lindelöf.

Received September 22, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 54D20, 54B10, 54D55.

Key words and phrases: countably compact space, star-Lindelöf space, absolutely star-Lind-elöf space.

The author is supported by NSFC project 10271056.

Throughout the paper, the extent e(X) of a space X is the smallest infinite cardinal κ such that every discrete closed subset of X has cardinality at most κ . The cardinality of a set A is denoted by |A|. Let \mathfrak{c} denote the cardinality of the continuum, ω_1 the first uncountable cardinal and ω the first infinite cardinal. Other terms and symbols that we do not define will be used as in [4].

2. Some results on absolutely star-Lindelöf spaces

For a space X, recall that the Alexandroff duplicate A(X) of a space X, denoted by A(X), is constructed in the following way: The underlying set of A(X) is $X \times \{0,1\}$ and each point of $X \times \{1\}$ is isolated; a basic neighborhood of a point $\langle x,0\rangle \in X \times \{0\}$ is a set of the form $(U \times \{0\}) \cup ((U \times \{1\}) \setminus \{\langle x,1\rangle\})$, where U is a neighborhood of x of X. It is well-known that A(X) is countably compact if X is countably compact and A(X) is compact if X is compact. Moreover, Vaughan [9] proved that if X is countably compact, then A(X) is acc. In this section, we give an example to show that the result can not be generalized to star-Lindelöf.

EXAMPLE 2.1. There exists a star-Lindelöf space X such that A(X) is not absolutely star-Lindelöf.

Proof. Let $X = \omega \cup \mathcal{R}$ be the Isbell-Mrówka space [8], where \mathcal{R} be a maximal almost disjoint family of infinite subsets of ω with $|\mathcal{R}| = \mathfrak{c}$. Then, X is star-Lindelöf, since ω is a countable dense subspace of X. To show that A(X) is not absolutely star-Lindelöf. Let us consider the open cover

$$\mathcal{U} = \{ \langle r, 0 \rangle \cup (\omega \times \{0, 1\}) : r \in \mathcal{R} \} \cup \{ \langle r, 1 \rangle : r \in \mathcal{R} \}$$

and the dense subset

$$D = (\omega \times \{0\}) \cup \{\langle x, 1 \rangle : x \in X\}$$

of A(X). Then, for any countable subset F of D, there exists a $r \in \mathcal{R}$ such that $\langle r, 1 \rangle \notin F$, since $|\mathcal{R}| = \mathfrak{c}$. Hence, $\langle r, 1 \rangle \notin St(F, \mathcal{U})$, since $\{\langle r, 1 \rangle : r \in \mathcal{R}\}$ is open and closed in A(X) and $\langle r, 1 \rangle$ is isolated for every $r \in \mathcal{R}$, which completes the proof.

In the rest of this section, we give a positive result. First we give a lemma:

LEMMA 2.2. Every T_1 space of countable extent is star-Lindelöf.

Proof. If X is not star-Lindelöf, then there exists an open cover \mathcal{U} of X such that $St(F,\mathcal{U}) \neq X$ for any countable subset F of X. Thus we may define a sequence of points x_{α} , $\alpha < \omega_1$ such that $x_{\alpha} \notin St(\{x_{\gamma} : \gamma < \alpha\}, \mathcal{U})$ for each $\alpha < \omega_1$. Then the set $\{x_{\alpha} : \alpha < \omega_1\}$ is an uncountable discrete and closed subset of X. Thus we get a contraction, which completes the proof.

REMARK. The converse of Lemma 2.2 need not be true. The Niemytzki plane and The the Isbell-Mrówka space are star-Lindelöf, since they are separable, but their extent equal c. Recently, Matveev [7] gave a stronger example than a Tychonoff star-Lindelöf space with arbitrary large extent.

THEOREM 2.3. If X is a T_1 space X with $e(X) < \omega_1$, then A(X) is absolutely star-Lindelöf.

Proof. We prove that A(X) is absolutely star-Lindelöf. To this end, let \mathcal{U} be an open cover of A(X). Obviously every point of $X \times \{1\}$ is isolated. Let B be the set of all isolated points of X, and let

$$D = (X \times \{1\}) \cup (B \times \{0\}).$$

Then, D is a dense subspace of A(X) and every dense subset of A(X) includes D. Thus, it is suffices to show that there exists a countable subset $E \subseteq D$ such that $St(E, \mathcal{U}) = A(X)$. For each $x \in X$, choose an open neighborhood $W_x = (V_x \times \{0,1\}) \setminus \{\langle x,1 \rangle\}$ of $\langle x,0 \rangle$ satisfying that there exists a $U \in \mathcal{U}$ such that $W_x \subseteq U$, where V_x is an open subset of X containing x. Put $\mathcal{V} = \{V_x : x \in X\}$. Then, \mathcal{V} is an open cover of X. Since X is T_1 and $e(X) < \omega_1$, then X is star-Lindelöf by Lemma 2.2. Thus, there exists a countable subset $E_0 \subseteq X$ such that $X = St(E_0, \mathcal{V})$. Put $E_1 = E_0 \times \{1\}$. Let

$$E'_1 = \{x \in E_0 : x \text{ is not isolated in } X \}.$$

For every $x \in E_1'$, pick $y_x \in V_x$ such that $x \neq y_x$. Then, $\langle y_x, 1 \rangle \in W_x$ and $\langle x, 0 \rangle \in W_x$.

For every $x \in X \setminus (E_0 \cup \{V_x : x \in E_1'\})$, there exists $x' \in X$ such that $x \in V_{x'}$ and $V_{x'} \cap E_0 \neq \emptyset$, hence $W_{x'} \cap E_1 \neq \emptyset$. Let

$$E_2 = E_1 \cup \{ \langle y_x, 1 \rangle : x \in E_1' \} \cup ((E_0 \setminus E_1') \times \{0\}).$$

Then, E_2 is a countable subset of D and $X \times \{0\} \subseteq St(E_2, \mathcal{U})$. Let $E_3 = A(X) \setminus St(E_2, \mathcal{U})$. Then, E_3 is a discrete and closed subset of A(X). Since $e(X) < \omega_1$, then $e(A(X)) < \omega_1$. Thus we have E_3 is countable. If we put $E = E_2 \cup E_3$, then E is a countable subset of D and $A(X) = St(E, \mathcal{U})$, which completes the proof.

COROLLARY 2.4. Every T_1 space X with $e(X) < \omega_1$ can be embedded in an absolutely star-Lindelöf space as a closed subspace.

From the proof of Example 2.1, it is not difficult to find that the converse of Theorem 2.3 is true.

THEOREM 2.5. If X is a T_1 space X and A(X) is absolutely star-Lindelöf, then $e(X) < \omega_1$.

Proof. Suppose that $e(X) \ge \omega_1$. Then, there exists a closed and discrete subset B of X such that $|B| \ge \omega_1$. Hence, $B \times \{1\}$ is a closed and open subset of A(X) and every point of $B \times \{1\}$ is an isolated point of A(X). To show that A(X) is not absolutely star-Lindelöf. Let C be the set of all isolated points of X. Let us consider the open cover

$$\mathcal{U} = \{A(X) \setminus (B \times \{1\})\} \cup \{\langle x, 1 \rangle : x \in B\}$$

and the dense subset

$$D = (C \times \{0\}) \cup \{\langle x, 1 \rangle : x \in X\}$$

of A(X). Then, for any countable subset E of D, there exists a $x \in B$ such that $\langle x, 1 \rangle \notin E$, since $|B| \geq \omega_1$. Hence, $\langle x, 1 \rangle \notin St(E, \mathcal{U})$, since $\{\langle x, 1 \rangle\}$ is isolated and the only element of \mathcal{U} containing $\langle x, 1 \rangle$ for every $x \in B$, which completes the proof.

We have the following corollary from Theorems 2.3 and 2.5.

COROLLARY 2.6. Let X be a T_1 space. Then, $e(X) < \omega_1$ if and only if A(X) is absolutely star-Lindelöf.

ACKNOWLEDGEMENTS. This paper was written while the author is studying in Nanjing University as a post-doctor. He would like to use the opportunity to express his gratitude to Prof. W-X Shi for his valuable suggestions. He is also most grateful to the referee for his helpful comments.

References

- [1] M. Bonanzinga, Star-Lindelöf and absolutely star-Lindelöf spaces, Q and A in General Topology 16 (1998), no. 2, 79–104.
- [2] M.-M. Dai, A class of topological spaces containing Lindelöf spaces and separable spaces, Chinese Ann. Math. Ser. 4A (1983), no. 5, 571-575.
- [3] E. K. van Douwen, G. M. Reed, A. W. Roscoe and I. J. Tree, *Star covering properties*, Topology Appl. **39** (1991), no. 1, 71–103.
- [4] R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989.
- [5] M. V. Matveev, Absolutely countably compact spaces, Topology Appl. 58 (1994), no. 1, 81–92.
- [6] ______, A survey on star-covering properties, Topological Atlas preprint No. 330, 1998.
- [7] _____, How weak is weak extent?, Topology Appl. 119 (2002), no. 2, 229–232.
- [8] S. Mrówka, On completely regular spaces, Fund. Math. 41 (1954), 105-106.
- [9] J. E. Vaughan, Absolute countable compactness and property (a), The Eighth Prague Topological Symposium, August 18-24, 1996.

DEPARTMENT OF MATHEMATICS, NANJING NORMAL UNIVERSITY, NANJING 210097, P. R. CHINA

E-mail: songyankui@pine.njnu.edu.cn