• Title/Summary/Keyword: Aldol

Search Result 63, Processing Time 0.018 seconds

Biomimetic Catalysis in Ionic Liquids: Markedly Enhanced Enantioselectivity in Amino Acid-Catalyzed Directed Asymmetric Aldol Reactions

  • Yun, Suk-Jin;Lee, Jae Kwan
    • Journal of Integrative Natural Science
    • /
    • v.8 no.2
    • /
    • pp.107-110
    • /
    • 2015
  • Amino acid-catalyzed directed asymmetric aldol reactions showed enhanced enantioselectivity when conducted in ionic liquids. Optically active products were afforded in better yields (up to 23% higher) and enantiomeric excess (up to 21% higher) in ionic liquids than in conventional organic solvents.

Platinum-Catalyzed Reductive Aldol and Michael Reactions

  • Lee, Ha-Rim;Jang, Min-Soo;Song, Young-Jin;Jang, Hye-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.327-333
    • /
    • 2009
  • For the Pt-catalyzed nucleophilic addition of enones, Pt complexes were employed in the presence of various phosphine ligands and $H_2\;(or\;Et_3SiH),$ affording inter- and intra-molecular coupling products in good to modest yield. Depending on reaction protocols, different phosphine ligands were required to optimize the conditions. In the aldol reaction, the Pt catalyst involving $P(2,4,6-(OMe)_3C_6H_2)3\;or\;P(p-OMeC_6H_4)_3$ was chosen. Michael reaction proceeds in good yields in the presence of $P(p-CF_3C_6H_4)_3$. Regarding the activity of the reductants, $H_2$ exhibited superior activity to $Et_3SiH$, resulting in a shorter reaction time and higher yield in the aldol and Michael reaction. In light of the deuterium labeling studies, the catalytic cycle including the hydrometalation of the enones by the platinum hydride species was proposed.

Stereoselective Crossed-Aldol Condensation of Hetarylmethyl Ketones with Aromatic Aldehydes in Water : Synthesis of (2E)-3-Aryl-1-hetarylprop-2-en-1-ones

  • Basaif, Salem A.;Sobahi, Tatiq R.;Khalil, Ali Kh.;Hassan, Mohamed A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1677-1681
    • /
    • 2005
  • Aldol condensation of 2-acetylthiophene, 2-acetylpyrrole and 2-acetylpyridine with different aromatic aldehydes were carried out in water in heterogeneous phases in the presence of cetyltrimethylammonium bromide as cationic surfactant at room temperature. All the reactions occur in a short time with excellent yields of steroselective hetarylpropanones in water as environmental friendly solvent.

Highly Diastereoselective Aldol-Type Reaction Using 3-Acetylthiazolidine-2-thione (3-아세틸티아졸리딘-2-티온을 이용한 입체선택적인 알돌-축합반응)

  • Tae Myeong Jeong;Ki Hun Park
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.426-430
    • /
    • 1989
  • Amino alcohol-derived thiazolidinethiones [4-(S)-IPTT, 4(S)-ETT] serve as efficient chiral auxiliary in tin medicated aldol condensation. A highly enantioselective aldol-type reaction forming various ${\beta}$-hydroxy carbonyl compounds from 3-acetylthiazolidine-2-thione and achiral aldehyde is achieved via divalent tin enolate. The other advantages of these chiral auxiliaries were the ease of removal by methanolysis.

  • PDF

DABCO-Catalyzed Green Synthesis of 2-Hydroxy-1,4-diones via Direct Aldol Reaction of Arylglyoxals in Water

  • Saraei, Mahnaz;Eftekhari-Sis, Bagher;Mozaffarnia, Sakineh
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.2
    • /
    • pp.252-259
    • /
    • 2013
  • A green and simple method to synthesize of 1,4-diketones via aldol reaction of arylglyoxals and ketones such as 1-(4-methoxyphenyl)-2-propanone, deoxybenzoin and substituted acetophenones in the presence of a catalytic amount of DABCO in water at room temperature has been reported. Corresponding 2-hydroxy-1,4-diones were obtained in moderate to high yields with simple separation of obtained solid from reaction mixture and recrystallization.

Acetate-Promoted Aldol-Type Reaction: Scope and Reactivity of Acetates and Aldehydes

  • Kim, Dong-Hyeon;Rahman, A. F. M. Motiur;Jeong, Byeong-Seon;Lee, Eung-Seok;Jahng, Yurng-dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.797-802
    • /
    • 2009
  • Potential of acetates and related compounds in glacial acetic acid as a catalyst for aldol-type condensation reactions was examined. Reactions of cycloalkanones or selected heteroaromatics with aldehydes in presence of 10 mol% of various acetates in acetic acid afforded ${\alpha},{\alpha}$'-bis(substituted-benzylidene)cycloalkanones and substituted-benzylidene-mackinazolinones, respectively, in good yields. Among the compounds tested, ammonium acetate is the best and effective especially towards the reactions of mackinazolinone and aliphatic aldehydes to afford 6-alkylidenemackinazolinones.

Design, Synthesis and Catalytic Property of L-Proline Derivatives as Organocatalysts for Direct Aldol Reaction

  • Wang, Lei;Tang, Ruiren;Yang, Hua
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.591-598
    • /
    • 2013
  • A series of chiral prolinamide compounds with pyridine-2, 6-dicarboxylic acid moieties derived from L-proline have been designed and synthesized, their catalytic properties for direct asymmetric aldol reactions were also studied in this article. These catalysts gave the aldol product in high yield (87%) and high enantioselectivity, up to 85%, of the anti-structure at room temperature but gave disappointing results at a lower temperature or when additive was added. Conditions, including solvents, temperature and additives were screened for the reactions. Moreover, the influence of presence of water on yield and stereoselectivity was also discussed.

Mn(III)-Mediated Radical Cyclization for Δ1-3-Octalone Synthesis

  • Lee, Mi-Ai;Yang, Jae-Deuk;Kim, Moon-Soo;Jeon, Hye-Sun;Baik, Woon-Phil;Koo, Sang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.736-740
    • /
    • 2002
  • An efficient and practical synthetic method of △1 -3-octalone, which is a versatile building block for thesyntheses of polycyclic compounds, has been developed. The dianion of ethyl acetoacetate reacts with cyclohexene-1-carboxaldehyde (3) to produce the aldol adduct 6, which then undergoes Mn(Ⅲ)-mediated radical cyclization followed by acetate elimination to give △1 -3-octalone 4. A detailed mechanistic insight of Mn(Ⅲ)-mediated cyclization of 6 has been disclosed.