Asymmetric Alkylation and Aldol Reactions of D-Mannitol-Derived Chiral Oxazolidin-2-one Derivatives

Yun Hee Maeng and Jong-Gab Jun*
Department of Chemistrv. Hallym University, Chunchon 200-702, Korea
Receved September 19, 2003

Key Words: Oxazolidin-2-one, Chiral auxiliary, Alkylation, Aldol reaction, 1,2:5,6-Di-O-cyclohexylidene-D-mannitol

In the preceeding article, we have introduced a new chiral oxazolidin-2-one auxiliary (1) derived from a cheap Dmannitol, and demonstrated the chiral selectivity in alkylation, aldol reaction and β-lactam synthesis.' The present work began with a search for useful chiral directing groups with which to control the chiral selectivity. Because the rigidity of cyclic structures contributes significantly to control of chirality. ${ }^{2}$ the 1,2;5,6-di-O-cyclohexylidene-Dmannitol (2) was used for the synthesis of oxazolidin-2-one chiral auxiliary (3) comparing the selectivity with the auxiliary (1) in alkylation and aldol reactions.

The 1,2:5,6-di-O-cyclohexylidene-D-mannitol (2), which was prepared from D-mannitol with cyclohexanone, boron trifluoride etherate and triethyl orthoformate in DMSO. ${ }^{3}$ was converted into the cyclic sulfate $\mathbf{4}$ via cyclic sulfite methodology. ${ }^{+}$This cyclic sulfate is similar to epoxide in that they undergo nucleophilic displacement ($\mathbf{S}_{* 2}$) readily, ${ }^{5}$ and produced 3-amino-3-deoxy-1,2:5,6-di-()-cyclohexyl-
idene-D-altritol (5) via azide displacement, hydrolysis followed by reduction (Scheme 1). The altritol 5 was converted into the chiral auxiliary 3 in 95% yield by using diethyl carbonate with sodium methoxide. ${ }^{6}$

The N-acylated derivatives 6 a-c were easily prepared in high yield by reaction of auxiliary $\mathbf{3}$ with acyl chlorides a-c using n-butyllithium in THF at $-60^{\circ} \mathrm{C}$ (Table 1).

As we expected, L.DA mediated asymmetric alkylations of N -acyl derivatives were obtained with high diastereomeric excess through 7.enolate and re-face selectivity (Table 2). ${ }^{7}$

In most cases (entries al-c1 except c 2), the cyclohexylidene auxiliary 6 gave higher diastereomeric excess than the isopropylidene auxiliary derived from 1 (the \%de in parenthesis indicates the \%de from the isopropylidene auxiliary). The diasteromeric ratio was easily identified by the integration of benzyl (entries a1, b1, b2, c2) and allyl (entries $a^{2}, ~ c l$) protons in ' H NMR chemical shift as we seen in previous results. Cyclohexylidene substituent in auxiliary

Table 1. N -Acylated derivatives 6 a-c from the chiral auxiliary 3

Kintry	R	Reaction time	Yield \%	$[\alpha]_{\mathrm{Fi}}^{75}$ $\left(\mathrm{c} . \mathrm{CHCl}_{3}\right)$
a	CH_{3}	30 min	92.2	$+35.3(0.6)$
b	PhCH_{2}	30 min	95.6	$+33.3(1.2)$
c	allyl	30 min	85.0	$+32.9(1.1)$

Scheme 1

[^0]Table 2. Asymmetric alkylation of th-acyl derivatives 6

Entry	R	R'X	$\mathrm{K} \times \mathrm{n}$ (h)	\% yicld ${ }^{\text {d }}$	\% de ${ }^{\text {b }}$	$[\alpha]_{\mathrm{D}}$
al	ClH_{3}	$\mathrm{PhCH} \mathrm{H}_{2} \mathrm{Br}$	5	91.7	>99 (94.0)	-20.6(c 1.1, ClHCl_{3})
a2	ClH_{4}	ally bromide	9	36.4	$>99(91.6)$	- $31.2\left(\mathrm{c} 1.7 . \mathrm{ClOl}_{3}\right.$)
bl	PhCl_{2}	Me]	9	45.6	$96.9(92.6)$	- 53.8 (c 1.9. CHCl_{3})
b2	PhCH_{2}	allyl bromide	6	55.6	96.8(91.6)	$-75.4\left(\mathrm{c}=1.1 . \mathrm{CHCl}_{3}\right)$
cl	allyl	Mel	20	46.3	97.1 (92.9)	-52.2 (c=0.9. CHCl_{3})
c2	allyl	PhCH 3 Br	20	52.1	89.4 (96.7)	-29.3 (c=1.1. CHCl_{3})

"Isolated yield. "The \%de in parenthesis indicates the yield from the isopropylidene auxiliary 1.
shows bulkier and more ligid character in space than isopropylidene derivative, and gives better selectivity in alkylation.
We also applied this cyclohexylidene auxiliary 6 to the aldol reaction with benzaldehyde. "Evans" syn product 8 was obtained by using I equiv of TiCl_{4} via non-chelated \angle enolate, however, "non-Evans" syn aldol product 9 was produced by using 2 equiv of TiCl_{4} wia chelated \angle-enolate (Scheme 2). ${ }^{8}$ Selectivity employing 1 equiv of TiCl_{4} was >99 : I Evans $\operatorname{syn} 8$: non-Evans $\operatorname{syn} 9$. The absolute configuration of 8 and the selectivity of syn:anti ratio were determined after hydrolytic cleavage of $\mathbf{8}$ to $\mathbf{1 0}$ by using $\mathrm{LiOOH} .{ }^{9}$ The hydrolysis gave 79.4% yield of (2S,3S)-acid $10\left[[\alpha]_{\mathrm{ij}}^{\stackrel{5}{4}}=-24.4\left(\mathrm{c}=0.9 . \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right.$, lit. $[\alpha]_{\mathrm{c}}^{22}=-26.4(\mathrm{c}=$ 1.04, $\left.\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]^{10}$ with quantitative recovery (099%) of auxiliary 3. The ${ }^{1} \mathrm{H} N M R$ of the product 10 indicated the selectivity $>96: 4$ for syn:anti ratio similar to previous results.'
In the same way, we found that the selectivity for nonEvans $\sin 9$: Evans $\operatorname{syn} 8$ employing 2 equiv of TiCl_{4} was $>99: 1$ and for syn:anti of $\mathbf{1 1}$ after hydrolysis was $>82: 18$. No products from endocyclic cleavage in hydrolysis reaction were observed in both cases. ${ }^{11}$
In conclusion, the cyclohexylidene chiral auxiliary 3
derived from D-mannitol shows better selectivity in asymmetric alkylations and comparable selectivity in aldol reactions compare with the isopropylidene derivative $\mathbf{1}$.

Experimental Section

All chemicals used were purchased from commercial sources and used as received unless otherwise stated. NMR spectra were recorded at Varian Gemini- 400 MHz F F -NMR for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$, with the chemical shifts (δ) reported in parts per million (ppm) relative to TMS and the coupling constants (J) quoted in $\mathrm{Hz} . \mathrm{CDCl}_{s}$ was used as a solvent and an internal standard. Infrared spectra were recorded on a Shimadzu IR-435 spectrometer. GC-MS analyses were performed using a HP-5890/JMS-AM 150 . JEOL. Flash chromatography was carried out using silica gel Merck 60 (230-400 mesh). Thin-layer chromatography (ILC) was performed on DC-Plastikfolien 60. F_{254} (Merck, layer thickness 0.2 mm) plastic-backed silica gel plates with visualization by UV light (254 nm) or by treatment with p anisaldehyde. Melting points were measured on a MELTEMP II apparatus and were uncorrected.

Scheme 2
(4S,5R)-4,5-Bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (3). To a solution of 3-amino-3-deoxy-1,2:5.6-di- O-isopropylidene-D-altritol (5) (0.63 g. 1.85 mmol) in diethyl carbonate (3.15 mL) under nitrogen atmosphere was added sodium methoxide (0.11 mL of 25% solution in MeOH. 0.46 mmol) and heated for 3 h at $70-80$ ${ }^{\circ} \mathrm{C}$. Diethyl carbonate was removed by evaporation and the residual solid was washed with hexane, recrystallized by MeOH to give the white solid 3 ($0.64 \mathrm{~g} .95 \%$). $R_{\mathrm{f}} 0.47$ (MeOH: $\mathrm{CHCl}_{3}=1: 9$); $m p 170-172^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}^{20}-35.8$ (c 1.0. $\left.\mathrm{CHCl}_{3}\right): V_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3288,2933,2850,1757.1738$. $1094 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.40-1.66(20 \mathrm{H} . \mathrm{m})$. $3.79(1 \mathrm{H}$, dd. $J 9.3 .4 .6 \mathrm{~Hz}) .3 .83-3.88(1 \mathrm{H} . \mathrm{m}) .3 .95-3.99$ $(1 \mathrm{H}, \mathrm{m}) .4 .13-4.19(2 \mathrm{H}, \mathrm{m}) .4 .33-4.39(2 \mathrm{H} . \mathrm{m}), 4.40-4.46$ $(1 \mathrm{H}, \mathrm{m}) .5 .43\left(1 \mathrm{H}\right.$, br s. NH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 158.1. Ill.2. 110.8. 78.1. 73.9, 71.9, 67.7. 67.1, 58.3, 36.9. $36.7,34.9 .34 .6,25.4 .25 .3,24.4(\times 2) .24 .2,24.1$.

Typical Procedure for the Preparation of N-Acyloxa-zolidin-2-ones, 6a-c. To a solution of oxazolidinone $\mathbf{3}$ (1.00 g. 2.72 mmol) in THF (100 mL) under nitrogen atmosphere was added $n-\mathrm{BuLi}(2.55 \mathrm{~mL}$ of 1.6 M solution in Hexane. 4.08 munol) at $-60^{\circ} \mathrm{C}$ and stirred for 30 min . Propionyl chloride (0.47 mL .5 .44 mmol) was added to this reaction mixture at $-40^{\circ} \mathrm{C}$ and stirred for 30 min . The reaction was quenched by the addition of water at $0^{\circ} \mathrm{C}$. The organic product was extracted with ethyl acetate. washed with brine. dried, concentrated and chromatographed (EtOAc : Hex = $1: 4)$ to give the liquid $6 \mathbf{a}(1.06 \mathrm{~g}, 92.2 \%)$.
($+S, 5 R$)-3-(1-Oxopropyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (6a). $R_{\mathrm{f}} 0.42$ (EtOAc : Hex $=1: 4):[\alpha]_{\mathrm{D}}^{20}+35.3\left(c 0.6 . \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$. $\left.\mathrm{CDCl}_{3}\right) \delta 1.18(3 \mathrm{H} . \mathrm{t} . J 7.3 \mathrm{~Hz}), 1.29-1.58(20 \mathrm{H} . \mathrm{m}), 3.92-$ $4.06(3 \mathrm{H} . \mathrm{m}) .4 .18(1 \mathrm{H}, \mathrm{dd} . J 9.2 .5 .8 \mathrm{~Hz}) .4 .31(1 \mathrm{H}, \mathrm{dd} . J$ $9.8 .7 .0 \mathrm{~Hz}), 4.58-4.68(2 \mathrm{H} . \mathrm{m}), 4.73(\mathrm{IH.d} J 6.7 \mathrm{~Hz}$.$) .$
($+S, 5 R$)-3-(3-Phenyl-1-oxopropyl)-4,5-bis-(2,2-dicyclo-hexyl-1,3-dioxolan-t-yl)-oxazolidin-2-one (6b). $95.6 \% ; R_{\mathrm{f}}$ $0.45(\mathrm{EtOAc}: \mathrm{Hex}=1: 4):[\alpha]_{\mathrm{D}}^{20}+33.3\left(c \quad 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 1.29-1.67(20 \mathrm{H} . \mathrm{m}), 2.94-3.11(2 \mathrm{H}$. m) . $3.20-3.29(2 \mathrm{H} . \mathrm{m}), 3.87-4.05(3 \mathrm{H} . \mathrm{m}), 4.10-4.29(2 \mathrm{H}$. m) . $4.56-4.65(2 \mathrm{H} . \mathrm{m}), 4.70(1 \mathrm{H} . \mathrm{d} . J 6.7 \mathrm{~Hz}), 7.15-7.32(5 \mathrm{H}, \mathrm{m})$.
(4S,5R)-3-(1-Oxo-4-pentenyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (6c). 85.0\%: $R_{f} 0.52$ (EtOAc : $\mathrm{Hex}=1: 4$): $[\alpha]_{\mathrm{D}}^{20}+32.9\left(c \quad 1.1 . \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 1.39-1.72(20 \mathrm{H} . \mathrm{m}) .2 .37-2.49(2 \mathrm{H} . \mathrm{m})$. 2.96-3.07 ($2 \mathrm{H} . \mathrm{m}$), 3.91-4.13 ($3 \mathrm{H} . \mathrm{m}$) , $4.18(1 \mathrm{H}, \mathrm{dd}, J 7.5$. $3.4 \mathrm{~Hz}) .4 .30(1 \mathrm{H} . \mathrm{dd} . J 9.8 .8 .4 \mathrm{~Hz}) .4 .58-4.69(2 \mathrm{H} . \mathrm{m}) .4 .72$ $(1 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}) .4 .99-5.14(2 \mathrm{H} . \mathrm{m}), 5.79-5.88(1 \mathrm{H} . \mathrm{m})$

Typical Procedure for the Preparation of Alkylated Products, 7al-7c2. To a solution of diisopropyl amine (0.05 $\mathrm{mL}, 0.35 \mathrm{mmol}$) in THF (3 mL) at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere was added $n-\mathrm{BuLi}(0.22 \mathrm{~mL}$ of 1.6 M solution in Hexane, 0.35 mmol) and stirred for 30 min . N-Propionyl oxazolidinone $6 \mathrm{a}(0.10 \mathrm{~g} .0 .24 \mathrm{mmol}$) in THF (2 mL) was added to this reaction mixture at $-60^{\circ} \mathrm{C}$ and stirred for 30 min. Benzyl bromide (0.11 mL .0 .94 mmol) was added to this reaction misture at $-40^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched by the addition of water at $0^{\circ} \mathrm{C}$. The
organic product was extracted with ethyl acetate. washed with brine, dried, concentrated, and chromatographed (EtOAc Hex $=1: 4$) to give the liquid $7 \mathrm{a} 1(0.11 \mathrm{~g}, 91.7 \%$).
($4, S, 5 R, 2^{\prime} R$)-3-(2-Methyl-3-pheny-l-oxopropyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-t-yl)-oxazolidin-2-one (7a1). $R_{\mathrm{f}} 0.45$ (EtOAc : Hex $=1: 4$); $[\alpha]_{\mathrm{D}}^{20}+20.6$ (c 1.1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 1.10(3 \mathrm{H}, \mathrm{d}, J 6.8$ Hz, α-methyl), $1.17-1.55(20 \mathrm{H} . \mathrm{m}), 2.50(1 \mathrm{H}, \mathrm{dd}, J 13.3,8.4$ Hz . benzyl proton), 3.18 (1H. dd. $J 13.2,6.2 \mathrm{~Hz}$. benzyl proton), $3.47(1 \mathrm{H}, \mathrm{dd} . J 8.9,7.3 \mathrm{~Hz}), 3.87(\mathrm{lH} . \mathrm{dd} . J 9.0 .6 .3$ $\mathrm{Hz}), 3.91-3.98(2 \mathrm{H}, \mathrm{m}), 4.11(\mathrm{H} . \mathrm{dd}, J 9.1,5.8 \mathrm{~Hz}), 4.25$ ($1 \mathrm{H} . \mathrm{dd} . J 9.7 .6 .9 \mathrm{~Hz}$) , $4.47(1 \mathrm{H}, \mathrm{t}, J 6.7 \mathrm{~Hz}) .4 .57(\mathrm{IH} . \mathrm{m}$, α-proton), $4.66(\mathrm{lH}$. d. $J 7.0 \mathrm{~Hz}$), $7.13(\mathrm{IH} . \mathrm{m}), 7.19-7.21$ $(4 \mathrm{H} . \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 175.5(\mathrm{C}=O) .151 .9$ ($\mathrm{C}=O$) . 138.2, 128.3 (x 2$), 127.3(\mathrm{x} 2), 125.3 .109 .8,108.9$, 76.1. 72.7.71.3. 66.0. 64.5. 54.4. 28.6.38.5.35.9.34.3. 34.0. $33.5,24.0 .23 .9,23.0 .22 .9 .22 .8,22.7$. 15.4.
(4S,5R,2'R)-3-(2-Methyl-1-ox0-4-pentenyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (7a2). $36.4 \% ; R_{\mathrm{f}} 0.48$ (EtOAc: Hex $=1: 4$): $[\alpha]_{\mathrm{D}}^{20}+31.2$ (c 1.7 , CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 1.13(3 \mathrm{H}, \mathrm{d}, J 6.8$ Hz, α-methyl). 1.37-1.63 (20H, m). $2.19(1 \mathrm{H}, \mathrm{m}$. allyl proton), $2.59(1 \mathrm{H}, \mathrm{m}$, allyl proton), $3.77(1 \mathrm{H}$, quintet. $J 6.7$ $\mathrm{Hz}), 3.84(1 \mathrm{H}$, dd, $J 8.9 .6 .7 \mathrm{~Hz}) .3 .99-4.05(2 \mathrm{H} . \mathrm{m}), 4.18$ (1H. dd. $J 9.1,5.9 \mathrm{~Hz}) .4 .31$ (1H. dd. $J 9.7,6.9 \mathrm{~Hz}$), 4.60 ($1 \mathrm{H} . \mathrm{t}, J 6.6 \mathrm{~Hz}$). $4.65(\mathrm{lH}, \mathrm{m}) .4 .73(1 \mathrm{H}, \mathrm{d} . J 6.9 \mathrm{~Hz}) .5 .06$ ($1 \mathrm{H} . \mathrm{m},=\mathrm{CH}$ trans $) .5 .12(\mathrm{IH} . \mathrm{s},=\mathrm{CH}$ cis $), 5.80(1 \mathrm{H}, \mathrm{m}$, $=\mathrm{CH}$ internal): ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.7$ $(C=O), 152.9(C=O)$. 135.3. 117.2110.8, 110.1, 77.1. 73.8, 72.3.67.1. 65.6.55.8.37.8. 37.1. 37.0.35.5.34.8.34.6.25.1. 25.0, 24. 1. 23.9, 23.8 (x2), 16.4.
(4S,5R,2'S)-3-(2-Methyl-3-pheny-l-oxopropyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (7b1). $45.6 \% ; R_{\mathrm{f}} 0.52$ (EtOAc: Hex $=1: 4$): $[\alpha]_{\mathrm{D}}^{20}+53.8$ (c 1.9 . $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 1.27(3 \mathrm{H}, \mathrm{d}, J 6.8$ Hz. α-methyl), $1.36-1.63$ ($20 \mathrm{H} . \mathrm{m}$), 2.72 ($1 \mathrm{H}, \mathrm{dd}, J 13.3,7.0$ Hz . benzyl proton). 2.93 (IH. dd. $J 13.4,8.2 \mathrm{~Hz}$, benzyl proton), $3.87(2 \mathrm{H} . \mathrm{dd} . J 9.3 .6 .5 \mathrm{~Hz}) .3 .94 \mathrm{dd} . J 9.0 .3 .4 \mathrm{~Hz}) .4 .00$ $(1 \mathrm{H} . \mathrm{dd} . J 9.0 .6 .4 \mathrm{~Hz}) .4 .08-4.14(2 \mathrm{H} . \mathrm{m}) .4 .52-4.57(3 \mathrm{H}$, $\mathrm{m})$. $7.17-7.28(5 \mathrm{H} . \mathrm{m}):{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 176.8$ $(C=O), 152.9(\mathrm{C}=0)$. 139.1. $129.1(\mathrm{x} 2), 128.4(\mathrm{x} 2), 126.4$. 110.8. 110.1, 77.0. 73.8. 72.2. 67.0. 65.7. 55.8, 40.1, 38.9. $36.9,35.4,34.7,34.5,25.0 .24 .9,24.0 .23 .9,23.8(\mathrm{x} 2), 17.6$.
(4S,5R,2'S)-3-(2-Benzyl-l-ox0-4-pentenyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (7b2). $55.6 \%: R_{\mathrm{f}} 0.53$ (EtOAc : Hex $=1: 4$): $[\alpha]_{\mathrm{D}}^{20}+75.4$ (c 1.1 . $\left.\mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42-1.60(20 \mathrm{H}, \mathrm{m})$. $2.35(1 \mathrm{H} . \mathrm{m}$. allyl proton). $2.60(1 \mathrm{H} . \mathrm{m}$. allyl proton). 2.76 (1 H. dd. $J 13.0 .10 .0 \mathrm{~Hz}$ benzyl proton). 2.87 (1 H. dd. J 13.0 .6 .1 Hz benzyl proton), $3.47(1 \mathrm{H}$. dd. $J 9.8 .6 .8 \mathrm{~Hz})$. $3.76(1 \mathrm{H} . \mathrm{brt} . J 7.6 \mathrm{~Hz}) .3 .85(1 \mathrm{H} . \mathrm{dd}, J 9.1,3.4 \mathrm{~Hz}) .3 .97$ $(1 \mathrm{H}$. dd, $J 8.9,6.5 \mathrm{~Hz}) .4 .08(1 \mathrm{H}$. dd $J 9.1,5.9 \mathrm{~Hz}) .4 .31$ $(2 \mathrm{H} . \mathrm{m}) .4 .46(2 \mathrm{H} . \mathrm{m}) .5 .04(1 \mathrm{H} . \mathrm{brd} J 10.3 \mathrm{~Hz} .=\mathrm{CH}$ trans $)$. $5.14(1 \mathrm{H}, \mathrm{d}, J 16.4 \mathrm{~Hz} .=\mathrm{CH}$ cis $) .5 .84(1 \mathrm{H}, \mathrm{m} .=\mathrm{CH}$ intemal). $7.15(2 \mathrm{H} . \mathrm{m}), 7.19-7.27(3 \mathrm{H}, \mathrm{m})$.
(4S,5R,2'S)-3-(2-Methyl-1-0xo-4-pentenyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (7c1).
$46.3 \% ; R_{\mathrm{f}} 0.59$ ($\mathrm{EtOAc}: \mathrm{Hex}=1: 4$) $;[\alpha]_{\mathrm{D}}^{20}+52.2$ (c 0.9 . CHCl_{j}): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.25(3 \mathrm{H} . \mathrm{d} . J 6.6$ Hz, α-methyl). 1.37-1.59 (20H. m), 2.17 ($\mathrm{IH} . \mathrm{m}$. allyl proton), $2.40(1 \mathrm{H}, \mathrm{m}$. allyl proton), $3.79(1 \mathrm{H}, \mathrm{m}) .3 .87(\mathrm{H}$. dd. $J 9.0 .6 .5 \mathrm{~Hz}) .4 .03(2 \mathrm{H}, \mathrm{m}) .4 .18(1 \mathrm{H}, \mathrm{dd}, J 9.2 .5 .9 \mathrm{~Hz})$. $4.28(1 \mathrm{H}, \mathrm{dd}, J 9.8 .6 .9 \mathrm{~Hz}) .4 .58-4.66(2 \mathrm{H}, \mathrm{m}), 4.73(\mathrm{lH} . \mathrm{d}$. $J 6.9 \mathrm{~Hz}), 5.01(\mathrm{lH.m} .=\mathrm{CH}$ trans). $5.07(\mathrm{IH} . \mathrm{s},=\mathrm{CH} \mathrm{cis})$. 5.75 (1H. m, $=\mathrm{CH}$ internal).
(+S,5R,2'R)-3-(2-Benzyl-I-oxo-4-pentenyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2-one (7c2). $52.1 \% ; R_{\mathrm{f}} 0.56(\mathrm{EtOAc}: \mathrm{Hex}=1: 4) ;[\alpha]_{\mathrm{D}}^{20}+29.3$ (c 1.1 . CHCl_{3}): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 1.52-1.59(20 \mathrm{H} . \mathrm{m})$. 2.24 ($1 \mathrm{H} . \mathrm{m}$, allyl proton). 2.34 ($1 \mathrm{H}, \mathrm{m}$. allyl proton). 2.71 ($1 \mathrm{H}, \mathrm{dd}, J 13.5,7.2 \mathrm{~Hz}$. benzyl proton), $3.16(1 \mathrm{H}, \mathrm{dd}, J 13.5$. 7.5 Hz , benzyl proton), 3.43 (lH. dd. $J 8.8 .7 .8 \mathrm{~Hz}$). 3.91 $(1 \mathrm{H}, \mathrm{dd} . J 9.0,6.1 \mathrm{~Hz}), 4.02(1 \mathrm{H}$, dd. $J 9.1 .3 .5 \mathrm{~Hz}), 4.16$ $(1 \mathrm{H}, \mathrm{dd}, J 9.1 .5 .9 \mathrm{~Hz}), 4.20-4.25(2 \mathrm{H} . \mathrm{m}), 4.49(1 \mathrm{H}$, br t, J $7.2 \mathrm{~Hz}) .4 .60(1 \mathrm{H}, \mathrm{m}), 4.67(1 \mathrm{H}, \mathrm{dd}, J 7.3 .0 .9 \mathrm{~Hz}), 4.99(\mathrm{lH}$. $\mathrm{s},=\mathrm{CH}$ cis $), 5.03(1 \mathrm{H} . \mathrm{d}, J 5.9 \mathrm{~Hz},=\mathrm{CH} t /(m s) .5 .73(1 \mathrm{H}, \mathrm{m}$. $=\mathrm{CH}$ internal $), 7.18(\mathrm{lH}, \mathrm{m}) .7 .23-7.27(4 \mathrm{H} . \mathrm{m})$.
(+S,5R,2'S,3'S)-3-(3-Hydroxy-2-methyl-3-pheny-l-oxo-propyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-0xa-zolidin-2-one (8). To a solution of (4S.5R)-3-(1-oxopropyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxazolidin-2one (6a) (0.15 g .0 .35 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ under nitrogen atmosphere was added $\mathrm{TiCl}_{4}(0.39 \mathrm{~mL}$ in 1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{5}, 0.39 \mathrm{mmol}$) at $-60^{\circ} \mathrm{C}$ and stirred for 5 min. TMEDA (0.13 mL .0 .89 mmol) was added to this reaction mixture at $-60^{\circ} \mathrm{C}$ and stirred for 30 min . Benzaldehyde ($0.07 \mathrm{~mL}, 0.71 \mathrm{mmol}$) was added to this reaction mixture at $-60^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched by the addition of 50% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The organic product was extracted with ethyl acetate. washed with brine. dried and concentrated to give the product 8 (53 mg. 65.8%). $R_{\mathrm{f}} 0.31$ (EtOAc : $\mathrm{Hex}=1: 2$). ${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.27(3 \mathrm{H} . \mathrm{d}, J 6.9 \mathrm{~Hz}, \alpha$-methyl). 1.34-1.57(20H. m), $3.33(\mathrm{lH} \mathrm{~d},. J 3.0 \mathrm{~Hz}), 3.83-3.93(3 \mathrm{H}, \mathrm{m}), 4.01-4.14$ $(3 \mathrm{H} . \mathrm{m}) .4 .92(1 \mathrm{H} . \mathrm{dd} . J 5.0 .2 .8 \mathrm{~Hz}) .7 .24-7.32(5 \mathrm{H} . \mathrm{m})$
($4 S, 5 R, 2^{\prime} R, 3^{\prime} R$)-3-(3-Hydroxy-2-methyl-3-pheny-l-oxo-propyl)-4,5-bis-(2,2-dicyclohexyl-1,3-dioxolan-4-yl)-oxa-zolidin-2-one (9). To a solution of ($4 S .5 R$)-3-(1-oxopropyl)-4.5-bis-(2.2-dimethyl-1.3-dioxolan-4-yl)-oxazolidin-2-one ($6 \mathbf{a}$) (0.15 g .0 .35 nmol) in $\mathrm{CH}_{3} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ under nitrogen atmosphere was added $\mathrm{TiCl}_{4}(0.71 \mathrm{~mL}$ in 1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.71 \mathrm{mmol}$) at $-60^{\circ} \mathrm{C}$ and stirred for $5 \mathrm{~min} . \mathrm{Et}_{3} \mathrm{~N}$ ($0.07 \mathrm{~mL}, 0.53 \mathrm{mmol}$) was added to this reaction mixture at $-60^{\circ} \mathrm{C}$ and stirred for 30 min . Benzaldehyde (0.07 mL .0 .71 mmol) was added to this reaction mixture at $-60^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched by the addition of water at $0^{\circ} \mathrm{C}$. The organic product was extracted with ethyl acetate washed with brine. dried and concentrated to give the product 9 ($41 \mathrm{mg} .21 .9 \%$). $R_{\mathrm{f}} 0.43$ (EtOAc : Hex $=1: 2$): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 0.96(3 \mathrm{H} . \mathrm{d} . J 6.9 \mathrm{~Hz} . \alpha-$ methyl) . $1.37-1.60(20 \mathrm{H}, \mathrm{m}) .3 .51(1 \mathrm{H}, ~ \mathrm{~d} . J 4.7 \mathrm{~Hz}) .3 .95-$ $4.12(4 \mathrm{H}, \mathrm{m}) .4 .15-4.21(2 \mathrm{H}, \mathrm{m}) .4 .32-4.37(1 \mathrm{H} . \mathrm{m}) .4 .67-$ $4.70(2 \mathrm{H}, \mathrm{m}) .4 .88(1 \mathrm{H} . \mathrm{dd}, J 7.1,1.1 \mathrm{~Hz}) .7 .24-7.37(3 \mathrm{H}$. m). $7.46(2 \mathrm{H}, \mathrm{d} . J 6.9 \mathrm{~Hz})$.
syn-(2S,3S)- and anti-(2R,3S)-3-Hydroxy-2-methyl-3phenylpropanoic acid (10). To a solution of ($4 S, 5 R, 2 ' S .3 ' S$)-3-(3-hydroxy -2-methyl-3-pheny-1-oxopropyl)-4.5-bis-(2.2-dicyclohexyl-1.3-dioxolan-4-yl)-oxazolidin-2-one (8) (100 $\mathrm{mg} .0 .19 \mathrm{nmol})$ in THF (2.9 mL) and $\mathrm{H}_{2} \mathrm{O}(0.95 \mathrm{~mL})$ was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1.07 \mathrm{~g}, 0.94 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (16 mg. 0.38 mmol) at $0^{\circ} \mathrm{C}$ and stirred for 30 min . Solid sodium sulfite and saturated NaHCO_{3} solution were added to this reaction mixture until pH 10 . THF in the reaction misture was evaporated. The misture was diluted with water (2.5 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried and concentrated to give the auxiliary $3(70 \mathrm{mg}$. 100%). The water layer was acidified with the addition of 3 N HCl solution until pH 2 , and extracted with EtOAc, washed with brine. dried, concentrated and chromatographed to give the acids 10 ($27 \mathrm{mg}, 79.4 \%$). $R_{\mathrm{f}} 0.19$ (EtOAc : Hex $=1: 2$): $[\alpha]_{\mathrm{D}}^{25}-24.4\left(c 0.9 . \mathrm{CH}_{2} \mathrm{Cl}_{2}\right):\left[\right.$ lit. ${ }^{10}[\alpha]_{\mathrm{D}}^{22}=-26.4$ (c 1.04 , $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$]: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.14(3 \mathrm{H}$, d. $J 9.0$ Hz, α-methyl). $2.83(1 \mathrm{H} . \mathrm{m} . \alpha-\mathrm{H}), 4.75(0.01 \mathrm{H} . \mathrm{d}, J 8.8 \mathrm{~Hz}$, anti CHOH$) .5 .18(0.99 \mathrm{H}, \mathrm{d}, J 4.0 \mathrm{~Hz} .5 y \mathrm{CHOH}) .5 .42$ $\left(2 \mathrm{H}\right.$. br s. OH and $\left.\mathrm{CO}_{2} \mathrm{H}\right) .7 .35\left(5 \mathrm{H}\right.$, s. aromatic). ${ }^{1} \mathrm{H}$ NMR integration afforded a ratio $s y n: a n t i=96: 4$. The data were consistent with those reported in the literature. ${ }^{10.12}$
syn-($2 R, 3 R$)- and anti-($2 \mathrm{~S}, 3 R$)-3-Hydroxy-2-methyl-3phenylpropanoic acid (11). Prepared from 9 (41 mg. 0.08 mumol) as same as above procedure and gave the acids 11 (10 $\mathrm{mg}, 71.9 \%$) and the auxiliary $3(28 \mathrm{mg}, 100 \%) . R_{\mathrm{f}} 0.19$ (EtOAc : Hex $=1: 2):[\alpha]_{\mathrm{D}}^{2 \mathrm{~s}}+26.5\left(c 0.35, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; [lit. ${ }^{10}$ $\left.[\alpha]_{\mathrm{D}}^{22}=-26.4\left(c 1.04 . \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]$ for the enantiomer 10. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.75(0.04 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}$, anti $\mathrm{CHOH}), 5.18(0.96 \mathrm{H} . \mathrm{d}, J 4.0 \mathrm{~Hz} .5 m \mathrm{CHOH}) .{ }^{1} \mathrm{H}$ NMR integration afforded a ratio stn:anti $=82: 18$.

Acknowledgment. This work was supported by the Research Grant from Hallym University. Korea.

References

1. (a) Kim. S.-M.: Jin. H.: Jun, J.-G. Bull. Koman Chem. Soc. 2002. 23.749. (b) Kimn. S.-M.: Jun. T.-G. Sinth. Commun. 2002.32 .3851.
2. Meyers. A. I. Acc. Chem. Res. 1978. 11. 375.
3. Sugiyama. T.: Sugawara. H.: Watanabe. M.: Yamashita. K. Agric. Biol. Chem. $1984,48.1841$.
4. (a) For a review. see Lohray. B. B. Synhesis 1992, 1035. (b) Cho. G. Y.; Choi. J. Y.: Ko. S. Y. Bull. Kowan Chem. Soc. 2002. 23. 11.
5. Lohray. B. B.: Sharpless. K. B. Tetrahedhon Lett. 1989. 30. 2623.
6. (a) Homeyer. A. H. C. S. Patent 2,399. 118. C. A. 1946. 10.4084. (b) Newnan. M. S.: Kutner. A. T. J. Am. Chent. Soc. 1951. 73. 4199. (c) Kang, S. H.: Hwang, Y. S.; Lee. H. S. Bull. Kowan Chem. Soc. 2002, 23. 1195.
7. Evans, D. A.: Ennis. M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982. 10t. 1737.
8. Crimmins. M. T.: King. B. W.: Tabet. E. A. J. An. Chen. Soc. 1997. 119. 7883.
9. Evans, D. A.: Britton. T. C.: Ellman, J. A. Terahedron Lett. 1987. 28.6141.
10. Gage. J. R.: Evans, D. A. Org. Sym. 1990. 68.83.
11. Evans. D. A.: Britton. T. C.: Ellman. T. A. Tetrahedrom Letf. 1987. 28.6141.
12. Evans. D. A.: Nelson. J. V.: Vogel. E.: Taber. T. R. J. An. Chen. Soc. 1981, 103, 3099.

[^0]: ${ }^{4}$ Corresponding author. Tel: +82-33-248-2075; E-mail: jgjun@hallym,ac.kr

