• Title/Summary/Keyword: Alcohol oxidation reaction

Search Result 56, Processing Time 0.036 seconds

Kinetics of veratryl alcohol oxidation by lignin peroxidase and in-situ generated $H_2O_2$ in an electrochemical reactor

  • Lee, Gi-Beom;Gu, Man-Bok;Mun, Seung-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.524-527
    • /
    • 2000
  • An electroenzymatic system to oxidize veratryl alcohol of on electrodes with in-situ generated hydrogen peroxide was studied. We investigated hydrogen peroxide generation, current efficiency, and veratryl alcohol oxidation in the electrode system at various conditions. The reaction rates of veratryl alcohol oxidation were compared in an electrochemical, an electroenzymatic, and an usual biochemical systems to prove the concept of electroenzymatic oxidation.

  • PDF

Molybdenum-Based Electrocatalysts for Direct Alcohol Fuel Cells: A Critical Review

  • Gaurav Kumar Yogesh;Rungsima Yeetsorn;Waritnan Wanchan;Michael Fowler;Kamlesh Yadav;Pankaj Koinkar
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.67-95
    • /
    • 2024
  • Direct alcohol fuel cells (DAFCs) have gained much attention as promising energy conversion devices due to their ability to utilize alcohol as a fuel source. In this regard, Molybdenum-based electrocatalysts (Mo-ECs) have emerged as a substitution for expensive Pt and Ru-based co-catalyst electrode materials in DAFCs, owing to their unique electrochemical properties useful for alcohol oxidation. The catalytic activity of Mo-ECs displays an increase in alcohol oxidation current density by several folds to 1000-2000 mA mgPt-1, compared to commercial Pt and PtRu catalysts of 10-100 mA mgPt-1. In addition, the methanol oxidation peak and onset potential have been significantly reduced by 100-200 mV and 0.5-0.6 V, respectively. The performance of Mo-ECs in both acidic and alkaline media has shown the potential to significantly reduce the Pt loading. This review aims to provide a comprehensive overview of the bifunctional mechanism involved in the oxidation of alcohols and factors affecting the electrocatalytic oxidation of alcohol, such as synthesis method, structural properties, and catalytic support materials. Furthermore, the challenges and prospects of Mo-ECs for DAFCs anode materials are discussed. This in-depth review serves as valuable insight toward enhancing the performance and efficiency of DAFC by employing Mo-ECs.

Search for acetaldehyde trapping agents by using alcohol dehydrogenase assay

  • Lee, Hyun-Joo;Lee, Kang-Man
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.160.3-161
    • /
    • 2003
  • Aldehyde and active form of free oxygen produced in alcohol metabolism in liver are the cause of liver cell damage. The main system of alcohol metabolism is composed of alcohol dehydrogenase(ADH), aldehyde dehydrogenase(ALDH) and cytochrome P4502E1. Alcohol dehydrogenase is reversible in alcohol metabolism. To block the backward reaction and enhance alcohol oxidation, acetaldehyde trapping agents were assayed. The assay was carried out by measuring decreasing NADH at 340nm, using acetaldcehyde and NADH as substrate and coenzyme respectively. (omitted)

  • PDF

A Study on the Synthesis of Oxidized Polyethylene Wax by Controlling Reaction Parameters (공정변수를 조절한 폴리에틸렌 산화왁스 합성에 관한 연구)

  • Yang, Chun-Hoe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.141-147
    • /
    • 2003
  • Oxidized polyethylene wax is obtained by oxidation of polyethylene wax and it is composed of various chemicals, e.g., fatty acid, alcohol, ketone and ester. The application of oxidized polyethylene wax is determined by the composition of these chemical substances. In this basic study we observed the basic reaction parameters of time, temperature, oxygen concentration and catalysts on the oxidation reaction of low molecular weight polyethylene(PE wax) by analyzing the acid value, physical and chemical properties of oxidized PE wax to develop a new oxidation process. Acid values are increased with temperature increase in the rage of $150^{\circ}C^{\sim}180^{\circ}C$ but decreased beyond 190$^{\circ}C$. Acid values are also increased with oxygen concentration. As the oxidation reaction proceeds the molecular weight and softening points of oxidation products are decreased by cracking reaction, but the viscosities are increased. To observe the crystallinity of oxidation products SEM experiment was performed. To obtain a high acid-value product in a mild condition, we adopted free radical catalysts and the acid value of the product using catalyst was higher than the product obtained without catalyst in the same reaction condition. The effective initiators were dicumyl peroxide(DCPO), t-butylperoxy-2-ethyl hexanoate(HOPO) and benzoyl peroxide(BPO) having long half-life.

Oxidation of Aromatic Aldehydes with Tetrabutylammonium Fluoride:Competition with the Cannizzaro Reaction

  • Chung, Kyoo-Hyun;Lee, Jae Hak;Chi, Dae Yoon;Moon, Byung-Chul;Lim, Choong Hwan;Kim, Jin Pil
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1203-1205
    • /
    • 2006
  • During the synthesis of 4-fluorobenzaldehyde via the SNAr reaction of 4-nitrobenzaldehyde with TBAF, it was found that an equivalent amount of TBAF could oxidize benzaldehyde to benzoic acid. The reaction of 4-nitrobenzaldehyde with tetrabutylammonium fluoride (TBAF) gave 4-nitrobenzoic acid in high yield. Depending on the reaction conditions, other aromatic aldehydes produced acids with fewer amounts of alcohols. However, this type of oxidation has limited practical applications. Nevertheless, the mechanism is quite different from the Cannizzaro reaction because the amounts of the acid salt and alcohol formed were different.

Oxidation of Benzyl Alcohols with Extraordinarily High Kinetic Isotope Effects

  • Jo, Myeong-Ran;Seok, Won-K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3003-3008
    • /
    • 2011
  • Reactions of benzyl alcohol and its derivatives by [Ru$^{IV}$(tpy)(dcbpy)(O)]$^{2+}$ (tpy = 2,2':6',2"-terpyridine; dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) leading to the corresponding benzaldehydes in acetonitrile and water have been studied. Kinetic studies show that the reaction is first-order in both alcohol and oxidant, with k = 1.65 (${\pm}$ 0.1) $M^{-1}s^{-1}$ at $20^{\circ}C$, ${\Delta}H^{\ddag}$ = 4.3 (${\pm}$ 0.1) kcal/mol, ${\Delta}S^{\ddag}$ = -22 (${\pm}$ 1) eu, and $E_a$ = 4.9 (${\pm}$ 0.1) kcal/mol. High ${\alpha}$ C-H kinetic isotope effects are observed, but O-H solvent isotope effects are negligible. Spectral evidences with the isotope effects suggest that oxidation of benzyl alcohols occurs by a two-electron, hydride transfer. The catalytic cycles of aerobic benzyl alcohol oxidation are employed.

Synthesis of Pd/TiO2 Catalyst for Aerobic Benzyl Alcohol Oxidation (호기성 벤질 알코올 산화반응을 위한 팔라듐 이산화티타늄 촉매 개발)

  • Cho, Tae Jun;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.281-285
    • /
    • 2014
  • $Pd/TiO_2$ particles were prepared by wet impregnation for aerobic benzyl alcohol oxidation. Catalysts were prepared by the impregnation of 10 wt% palladium on $TiO_2$ after calcination at various temperatures. The surface areas of the catalysts were changed with calcination temperature. The catalyst calcined at $300^{\circ}C$ possessed the highest surface areas. Catalytic activity of the prepared samples was examined for aerobic benzyl alcohol oxidation. Among the samples, $Pd/TiO_2$ calcined at $300^{\circ}C$ showed the highest catalytic activity. Moreover, the catalysts with various Pd concentrations from 5 wt% to 15 wt% were prepared to investigate an optimum catalyst. 10 wt% $Pd/TiO_2$ was the most active in this reaction due to its higher surface areas and metal dispersion.

High Selective Oxidation of Alcohols Based on Trivalent Ion (Cr3+ and Co3+) Complexes Anchored on MCM-41 as Heterogeneous Catalysts

  • Shojaei, Abdollah Fallah;Rafie, Mahboubeh Delavar;Loghmani, Mohammad Hassan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2748-2752
    • /
    • 2012
  • Cr(III) and Co(III) complexes with acetylacetonate were anchored onto a mesoporous MCM-41 through Schiff condensation. The materials were characterized by XRD, FT-IR, BET, CHN and ICP techniques. Elemental analysis of samples revealed that one C=N bond was formed through Schiff condensation on MCM-41 surface. The catalysts were tested for the alcohol oxidations using t-butyl hydroperoxide (TBHP) and $H_2O_2$ as oxidant. The catalytic experiments were carried out at both room temperature and reflux condition. Various solvents such as dichloromethane, acetonitrile and water were examined in the oxidation of alcohols. Among the different solvents, catalytic activity is found more in acetonitrile. Further, the catalysts were recycled three times in the oxidation of alcohols and no major change in the conversion and selectivity is observed, which shows that the immobilized metal-acetylacetonate complexes are stable under the present reaction conditions.

Electrochemical Synthesis of 𝛽-Hydroxynitrile by addition of Acetonitrile into Benzyl Alcohol (벤질알코올과 아세토나이트릴의 반응을 통한 𝛽-hydroxynitrile의 전기화학적 합성)

  • Choi, Hyebin;An, Jaun;Kwon, Ki-Young
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.436-439
    • /
    • 2022
  • 𝛽-Hydroxynitrile and 𝛽-ketonitrile were synthesized by the electrochemical oxidation of benzyl alcohol in an acetonitrile solvent. 𝛽-Hydroxynitrile was prepared by the reaction between benzaldehyde from the oxidation of benzyl alcohol and acetonitrile anion which was produced from the electrochemical reduction of acetonitrile. 𝛽-Hydroxynitrile was finally electrochemically converted into 𝛽-ketonitrile by applying 20 mA of current for 3 h. We demonstrated that 𝛽-hydroxynitrile or 𝛽-ketonitrile syntheses were prepared by electrochemical oxidation of benzyl alcohol with a commonly used Pt electrode at room temperature.