References
- Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Catalysis. Chem. Rev. 2000, 100, 2159- 2232.
- Schuster, C.; Hölderich, W. F. Catal. Today 2000, 60, 193-207. https://doi.org/10.1016/S0920-5861(00)00336-9
- Knops-Gerrits, P. P.; Vankelecom, I. F. J.; Béatse, E. Jacobs, P. A. Catal. Today. 1996, 32, 63-70. https://doi.org/10.1016/S0920-5861(96)00179-4
- Trong On, D.; Desplantier-Giscard, D.; Danumah, C.; Kaliaguine, S. App. Catal. A: General. 2003, 253, 545-602. https://doi.org/10.1016/S0926-860X(03)00195-9
- Zhou, X.; Yu, X.; Huang, J.; Che, C. Chem. Commun. 1999, 12, 1789-1790.
- Sutra, P.; Brunel, D. Chem. Commun. 1996, 2485-2486.
- Liu, C.; Li, S.; Pang, W.; Che, C. Chem. Commun. 1997, 65-66.
- Chen, J.; Li, Q.; Xu, R.; Xiao, F. Angew. Chem. Int. Ed. 1996, 34, 2694-2696. https://doi.org/10.1002/anie.199526941
- Van Rhijn, W.; De, M.; Sels, D.; Bossaert, B. Chem. Commun. 1998, 18, 317-318.
- Leadbeater, N.; Marco, M. Chem. Rev. 2002, 102, 3217-3274. https://doi.org/10.1021/cr010361c
- Xia, Q.; Ge, H.; Ye, Q.; Liu, C.; Su, Z. Chem. Rev. 2005, 105, 1603-1662. https://doi.org/10.1021/cr0406458
- Li, C. Catal. Rev. Sci. Eng. 2004, 46, 419-492. https://doi.org/10.1081/CR-200036734
- Fan, Q. H.; Li, Y. M.; Chan, A. S. C. Chem. Rev. 2002, 102, 3385- 3466. https://doi.org/10.1021/cr010341a
- Brunel, D.; Bellocq, N.; Sutra, P.; Cauvel, A.; Lasperas, M. Coord. Chem. Rev. 1998, 178, 1085-1108. https://doi.org/10.1016/S0010-8545(98)00121-0
- Larrow, J. F.; Jacobsen, E. N. Top. Organomet. Chem. 2004, 6, 123-152.
- Cozzi, P. G. Chem. Soc. Rev. 2004, 33, 410-421. https://doi.org/10.1039/b307853c
- Katsuki, T. Chem. Soc. Rev. 2004, 33, 437-444. https://doi.org/10.1039/b304133f
- Jacobson, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. J. Am. Chem. Soc. 1991, 113, 7063-7064. https://doi.org/10.1021/ja00018a068
- Palucki, M.; Pospisil, P.; Zhang, J.; Jacobson, W. J. Am. Chem. Soc. 1994, 116, 9333-9334. https://doi.org/10.1021/ja00099a062
- Irie, R.; Noda, K.; Ito, Y.; Matsumoto, N.; Katsuki, T. Tetrahedron Lett. 1990, 31, 7345-7348. https://doi.org/10.1016/S0040-4039(00)88562-7
- Bhoware, S. S.; Singh, A. P. J. Mol. Catal. A: Chem. 2007, 266, 118-130. https://doi.org/10.1016/j.molcata.2006.09.031
- Oliveira, P.; Machado, A.; Ramos, A. M.; Fonseca, I. M.; Botelho do Rego, F. M.; Vital, A. M. Catal. Commun. 2007, 8, 1366-1372. https://doi.org/10.1016/j.catcom.2006.12.004
- Silva, A. R.; Adrian, K.; Whitwood, C.; Clark, A. C.; Freire, J. H. Eur. J. Inorg. Chem. 2006, 6, 1275-1283.
- Matijasic, A. C.; Patarin, A.; Saucrland, J.; Grillet, C.; Huve, Y. Micropor. Mat. 1997, 10, 137-147. https://doi.org/10.1016/S0927-6513(97)00003-5
Cited by
- ) complex: an efficient heterogeneous catalyst for oxidation of alcohols using TBHP vol.5, pp.115, 2015, https://doi.org/10.1039/C5RA21148D
- Synthesis and characterization of RuO2@ZrO2 core–shell nano particles as heterogeneous catalyst for oxidation of benzylic alcohols in different conditions vol.13, pp.5, 2016, https://doi.org/10.1007/s13738-015-0794-6
- Cr(III)-containing Fe3O4/mercaptopropanoic acid–poly(2-hydroxyethyl acrylate) nanocomposite: a highly active magnetic catalyst in solvent-free aerobic oxidat vol.43, pp.9, 2012, https://doi.org/10.1039/c3dt52729h
- Synthesis, characterization and study of catalytic activity of Silver doped ZnO nanocomposite as an efficient catalyst for selective oxidation of benzyl alcohol vol.127, pp.3, 2015, https://doi.org/10.1007/s12039-015-0795-0
- Comparison of selective oxidation of aromatic alcohols using copper(II) chromite-titanium dioxide nanocomposite at reflux, light irradiation, and microwave conditions vol.47, pp.9, 2012, https://doi.org/10.1080/24701556.2017.1284093