DOI QR코드

DOI QR Code

High Selective Oxidation of Alcohols Based on Trivalent Ion (Cr3+ and Co3+) Complexes Anchored on MCM-41 as Heterogeneous Catalysts

  • Received : 2012.04.13
  • Accepted : 2012.05.23
  • Published : 2012.08.20

Abstract

Cr(III) and Co(III) complexes with acetylacetonate were anchored onto a mesoporous MCM-41 through Schiff condensation. The materials were characterized by XRD, FT-IR, BET, CHN and ICP techniques. Elemental analysis of samples revealed that one C=N bond was formed through Schiff condensation on MCM-41 surface. The catalysts were tested for the alcohol oxidations using t-butyl hydroperoxide (TBHP) and $H_2O_2$ as oxidant. The catalytic experiments were carried out at both room temperature and reflux condition. Various solvents such as dichloromethane, acetonitrile and water were examined in the oxidation of alcohols. Among the different solvents, catalytic activity is found more in acetonitrile. Further, the catalysts were recycled three times in the oxidation of alcohols and no major change in the conversion and selectivity is observed, which shows that the immobilized metal-acetylacetonate complexes are stable under the present reaction conditions.

Keywords

References

  1. Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Catalysis. Chem. Rev. 2000, 100, 2159- 2232.
  2. Schuster, C.; Hölderich, W. F. Catal. Today 2000, 60, 193-207. https://doi.org/10.1016/S0920-5861(00)00336-9
  3. Knops-Gerrits, P. P.; Vankelecom, I. F. J.; Béatse, E. Jacobs, P. A. Catal. Today. 1996, 32, 63-70. https://doi.org/10.1016/S0920-5861(96)00179-4
  4. Trong On, D.; Desplantier-Giscard, D.; Danumah, C.; Kaliaguine, S. App. Catal. A: General. 2003, 253, 545-602. https://doi.org/10.1016/S0926-860X(03)00195-9
  5. Zhou, X.; Yu, X.; Huang, J.; Che, C. Chem. Commun. 1999, 12, 1789-1790.
  6. Sutra, P.; Brunel, D. Chem. Commun. 1996, 2485-2486.
  7. Liu, C.; Li, S.; Pang, W.; Che, C. Chem. Commun. 1997, 65-66.
  8. Chen, J.; Li, Q.; Xu, R.; Xiao, F. Angew. Chem. Int. Ed. 1996, 34, 2694-2696. https://doi.org/10.1002/anie.199526941
  9. Van Rhijn, W.; De, M.; Sels, D.; Bossaert, B. Chem. Commun. 1998, 18, 317-318.
  10. Leadbeater, N.; Marco, M. Chem. Rev. 2002, 102, 3217-3274. https://doi.org/10.1021/cr010361c
  11. Xia, Q.; Ge, H.; Ye, Q.; Liu, C.; Su, Z. Chem. Rev. 2005, 105, 1603-1662. https://doi.org/10.1021/cr0406458
  12. Li, C. Catal. Rev. Sci. Eng. 2004, 46, 419-492. https://doi.org/10.1081/CR-200036734
  13. Fan, Q. H.; Li, Y. M.; Chan, A. S. C. Chem. Rev. 2002, 102, 3385- 3466. https://doi.org/10.1021/cr010341a
  14. Brunel, D.; Bellocq, N.; Sutra, P.; Cauvel, A.; Lasperas, M. Coord. Chem. Rev. 1998, 178, 1085-1108. https://doi.org/10.1016/S0010-8545(98)00121-0
  15. Larrow, J. F.; Jacobsen, E. N. Top. Organomet. Chem. 2004, 6, 123-152.
  16. Cozzi, P. G. Chem. Soc. Rev. 2004, 33, 410-421. https://doi.org/10.1039/b307853c
  17. Katsuki, T. Chem. Soc. Rev. 2004, 33, 437-444. https://doi.org/10.1039/b304133f
  18. Jacobson, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. J. Am. Chem. Soc. 1991, 113, 7063-7064. https://doi.org/10.1021/ja00018a068
  19. Palucki, M.; Pospisil, P.; Zhang, J.; Jacobson, W. J. Am. Chem. Soc. 1994, 116, 9333-9334. https://doi.org/10.1021/ja00099a062
  20. Irie, R.; Noda, K.; Ito, Y.; Matsumoto, N.; Katsuki, T. Tetrahedron Lett. 1990, 31, 7345-7348. https://doi.org/10.1016/S0040-4039(00)88562-7
  21. Bhoware, S. S.; Singh, A. P. J. Mol. Catal. A: Chem. 2007, 266, 118-130. https://doi.org/10.1016/j.molcata.2006.09.031
  22. Oliveira, P.; Machado, A.; Ramos, A. M.; Fonseca, I. M.; Botelho do Rego, F. M.; Vital, A. M. Catal. Commun. 2007, 8, 1366-1372. https://doi.org/10.1016/j.catcom.2006.12.004
  23. Silva, A. R.; Adrian, K.; Whitwood, C.; Clark, A. C.; Freire, J. H. Eur. J. Inorg. Chem. 2006, 6, 1275-1283.
  24. Matijasic, A. C.; Patarin, A.; Saucrland, J.; Grillet, C.; Huve, Y. Micropor. Mat. 1997, 10, 137-147. https://doi.org/10.1016/S0927-6513(97)00003-5

Cited by

  1. ) complex: an efficient heterogeneous catalyst for oxidation of alcohols using TBHP vol.5, pp.115, 2015, https://doi.org/10.1039/C5RA21148D
  2. Synthesis and characterization of RuO2@ZrO2 core–shell nano particles as heterogeneous catalyst for oxidation of benzylic alcohols in different conditions vol.13, pp.5, 2016, https://doi.org/10.1007/s13738-015-0794-6
  3. Cr(III)-containing Fe3O4/mercaptopropanoic acid–poly(2-hydroxyethyl acrylate) nanocomposite: a highly active magnetic catalyst in solvent-free aerobic oxidat vol.43, pp.9, 2012, https://doi.org/10.1039/c3dt52729h
  4. Synthesis, characterization and study of catalytic activity of Silver doped ZnO nanocomposite as an efficient catalyst for selective oxidation of benzyl alcohol vol.127, pp.3, 2015, https://doi.org/10.1007/s12039-015-0795-0
  5. Comparison of selective oxidation of aromatic alcohols using copper(II) chromite-titanium dioxide nanocomposite at reflux, light irradiation, and microwave conditions vol.47, pp.9, 2012, https://doi.org/10.1080/24701556.2017.1284093