• Title/Summary/Keyword: Alane

Search Result 11, Processing Time 0.032 seconds

Process variables of gamma-type aluminum trihydride in wet chemical synthesis (감마형 삼수소 알루미늄 습식합성반응의 공정변수 연구)

  • Yang, Yo-Han;Kim, Woo-Ram;Gwon, Yoon-Ja;Park, Mi-Jeong;Kim, Jun-Hyung;Cho, Young-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.214-222
    • /
    • 2018
  • Alane(aluminum trihydride, $AlH_3$) is a candidate material involving high energetic capacity for solid propellant or explosives. In this study aluminum trihydride-etherate ($AlH_3{\cdot}(C_2H_5)_2O$) was synthesized through a wet process, and solid alane was extracted by controlled crystallization. Alane crystals were grown during the crystallization step with phase conversion of aluminum trihydride-etherate to alane using an anti-solvent. Stable crystal forms were found by a 2 hour crystallization process at $85^{\circ}C$. Finally the extracted solid aluminium trihydride consisted mainly of ${\gamma}-type$ with $50-100{\mu}m$ in size.

Metalorganic Chemical Vapor Deposition of Aluminum Thin Film for ULSI Using Dimethylethylamine Alane(DMEAA) (DMEAA를 이용한 초고집적 회로용 알루미늄 박막의 제조)

  • 이기호;김병엽;이시우
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.81-86
    • /
    • 1995
  • Aluminum has been deposited selectively on TiN surfaces in the presence of Si, SiO2 from Dimethyethylamine Alane(DMEAA). The film properties of the deopsited AI film were determined by various methods(SEM, Auger, UV-photospectrometer, Four point-probe, XRD). The effect of in-situ H2 plasma precleaning was studied. The effect of gap distance, pressure and temperature on the properties(crystallinity, resistance, grain size, morphology) of AI film and on the growth rates was investigated. It was found that the plasma precleaning promotes the growth rate and there exists optimum thmperature for maximum growth rate.

  • PDF

Effects of Process Variables on the Growth of Dendrite in the Electrochemical Alane(AlH3) Production Process (전기화학적 알레인(AlH3) 제조 공정에서 덴드라이트의 성장에 미치는 공정 변수 영향)

  • KIM, HYOSUB;PARK, HYUNGYU;PARK, CHUSIK;BAE, KIKWANG;KIM, YOUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.532-540
    • /
    • 2015
  • Electrochemical alane ($AlH_3$) production process can be provided as a synthesis route which close a reversible cycle. In this study, growth inhibition of dendrite as key issues in this process was investigated. Main cause of dendrite growth was because Al fine powder separated in consumption process of Al electrode was moved to Pd electrode. In an effort to avoid this, use of glass block with uniform holes was the most effective to inhibit the amount of dendrite to that of $AlH_3$. Furthermore, effects of Al electrode (anode) type and electrolyte concentration were investigated and the optimal condition for inhibiting dendrite formation was proposed.

Synthesis and Characterization of Al Film using N-methylpyrrolidine Alane (N-methylpyrrolidine Alane 전구체를 사용한 Al 필름 합성 및 특성 분석)

  • Seo, Moon-Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.549-554
    • /
    • 2009
  • Al thin films were synthesized on TiN/Si substrate by MOCVD using N-methylpyrrolidine alane (MPA) precursor. Effects of substrate temperature, reaction pressure on the deposition rate, surface roughness and electrical resistivity were investigated. The early stage of Al thin film formation was analyzed by in-situ surface reflectivity measurement with a laser and photometer apparatus. From the Arrhenius plot of deposition rate vs. substrate temperature, it was found that the activation energy of surface reaction was 91.1kJ/mole, and the transition temperature from surface-reaction-limited region to mass-transfer-limited region was about $150^{\circ}C$. The growth rate increased with the reaction pressure, and average growth rates of $200{\sim}1,200nm/min$ were observed at various experimental conditions. Surface roughness of the film increased with the film thickness. The electrical resistivity of Al film was about $4{\mu}{\Omega}{\cdot}cm$ in the case of optimum condition, and it was close to the value of the bulk Al, $2.7{\mu}{\Omega}{\cdot}cm$.

Analysis of Growth Mechanism of Al Thin Film by in-situ Surface Reflectance Measurement During MOCVD Process (MOCVD에 의한 Al 박막 증착 중의 표면 반사도 측정을 통한 박막 성장 메커니즘 분석)

  • Kim, Kisoo;Seo, Moon Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.104-108
    • /
    • 2015
  • Al thin films were deposited on TiN/Si(100) via metal-organic chemical vapor deposition using N-methylpyrrolidine alane as a precursor. Characterization of the deposited films were investigated with SEM, XRD, ${\alpha}$-step, AFM, 4-point probe. The early stage of Al thin film deposition was analyzed by in-situ surface reflectance measurement with laser and photometer apparatus. The surface reflectance were changed greatly during the initial 30~40 seconds. There were two increases and two decreases in the surface reflectance, thus the sequence of Al films were deposited at 8 significant points of the surface reflectance change. Surface topograph and cross-sectional view of each film were analyzed with SEM. Al films were grown in the complex mechanism of Volmer-Weber and Stranski-Krastanov process.

Hydrogen Effect on Deposition Rate of Aluminum Thin Films from Chemical Vapor Deposition Using Dimethylethylamine Alane (DMEAA를 사용해 CVD법으로 증착한 알루미늄 박막의 증착속도에 관한 수소 효과)

  • Jang, Tae-Ung;Lee, Hwa-Seong;Baek, Jong-Tae;An, Byeong-Tae
    • Korean Journal of Materials Research
    • /
    • v.8 no.2
    • /
    • pp.131-134
    • /
    • 1998
  • The deposition rate and surface morphology of Al films deposited by MOCVD have been studied on the $SiO_{2}$ and TiN(60nm/Si) substrates. A1 films were deposited with the pyrolysis of dimethylethylamine alane(DMEAA). When A1 was deposited on Ti& substrate without carrier gas, Al deposition rate increased with H\ulcorner pre- treatment. The $H_2$ gas enhances the CVD reaction at the substrate surface. When Al was deposited on $SiO_{2}$ substrate, $H_2$ plasma pretreatment reduced Al incubation time and made a dense Al film compared with Ar plasma pre- treatment or no pretreatment.

  • PDF

Theoretical Study of the Hydroalumination Reaction of Cyclopropane with Alane

  • Singh, Satya Prakash;Thankachan, Pompozhi Protasis
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.2
    • /
    • pp.216-220
    • /
    • 2013
  • The hydroalumination of cyclopropane has been investigated using the B3LYP density functional method employing several split-valence basis sets. It is shown that the reaction proceeds via an intermediate weakly bound complex and a four-centered transition state. Calculations at higher levels of theory were also performed at the geometries optimized at the B3LYP level, but only slight changes in the barriers were observed. Structural parameters for the transition state are also reported.

Development of Al plasma assisted chemical vapor deposition using DMEAA (DMEAA를 이용한 알루미늄 PACVD법의 개발)

  • 김동찬;김병윤;이병일;김동환;주승기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.10
    • /
    • pp.98-106
    • /
    • 1996
  • A thin film of aluminum for ultra large scale integrated circuits metalization has been deposited on TiN and SiO$_{2}$ substrates by plasma assisted chemical vapor deposition using DMEAA (dimenthylethylamine alane) as a precursor. The effects of plasma on surface topology and growth characteristics were investigated. Thermal CVD Al could not be got continuous films on insulating subsrate such as SiO$_{2}$. However, it was found that Al films could be deposited on SiO$_{2}$ substate without any pretreatments by the hydrogen plasma for pyrolysis of DMEAA. Compared to the thermal CVD, PACVD films showed much better reflectance and resistance on TiN and SiO$_{2}$ substrate. We obtained mirror-like PACVD Al film of 90% reflectance and resistance on TiN and SiO$_{2}$ substrates. We obtained mirror-like PACVD Al film of 90% reflectance on TiN substrate. Excellent conformal step coverage was obtained on submicron contact holes ;by the PACVD blanket deposition.

  • PDF

Properties of Aluminum Films Deposited by CVD using DMEAA (DMEAA 소스로 기상화학 증착된 알루미늄 박막의 증착특성)

  • Jang, T.W.;Moon, W.;Baek, J.T.;Ahn, B.T.
    • Korean Journal of Materials Research
    • /
    • v.6 no.3
    • /
    • pp.333-340
    • /
    • 1996
  • p-type(100) 실리콘 기판과 TiN(50nm)/Si 기판에 dimethylethylamine alane(DMEAA)을 반응소스로 하여 알루미늄을 증착시켜 증착온도와 유량, 반송가스 종류에 따른 방향성, 증착속도, 미세구조 변화에 대해 연구하였다. 알루미늄의 증착속도는 기판온도, 반송가스 종류 및 유량에 따라 100-650mn/min으로 다양하게 조절되었다. DMEAA의 증착 활성화에너지는 TiN 기판에서는 약 0.leV이었고 Si와 SiO2 기판에서는 각각 약 0.23eV, 0.24eV이었다. 알루미늄 박막의 방향성은 증착속도의 감소에 따라 (200)에서 (111)방향으로 변하였다. 증착된 알루미늄 박막의 불순물 함량은 산소의 경우 0.2at%, 탄소의 경우 1.8at.%이었다. DMEAA 소스에 의한 알루미늄의 증착속도는 반송가스가 Ar 일 때 보다 H2 가스를 사용하면 증착속도가 크게 증가하였으며 이는 반송가스에 의해 SiO2표면의 흡착 H 농도가 증가하고 흡착 H가 소스 가스와 반응하여 핵생성 site 로 작용하는 것으로 생각된다. 알루미늄 박막의 비저항은 표면 미세조직에 크게 영향을 받으며 그 값은 약 3-7$\mu$$\Omega$cm이었다.

  • PDF