Browse > Article
http://dx.doi.org/10.5012/jkcs.2013.57.2.216

Theoretical Study of the Hydroalumination Reaction of Cyclopropane with Alane  

Singh, Satya Prakash (Department of Chemistry, Indian Institute of Technology Roorkee)
Thankachan, Pompozhi Protasis (Department of Chemistry, Indian Institute of Technology Roorkee)
Publication Information
Abstract
The hydroalumination of cyclopropane has been investigated using the B3LYP density functional method employing several split-valence basis sets. It is shown that the reaction proceeds via an intermediate weakly bound complex and a four-centered transition state. Calculations at higher levels of theory were also performed at the geometries optimized at the B3LYP level, but only slight changes in the barriers were observed. Structural parameters for the transition state are also reported.
Keywords
Hydroalumination; Cyclopropane; Intermediate complex; Transition state; Propylalane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Carey, A.; Sundberg, R. J. Advanced Organic Chemistry: Structure and Mechanisms; Springer: New York, 2000.
2 Zweifel, G.; Miller, J. A. Org. React. 1984, 32, 375.
3 Winterfeldt, E. Synthesis 1975, 1975(10), 617−630.   DOI
4 Marek, I.; Normant, J. F. Chem. Rev. 1996, 96(8), 3241-3268.   DOI   ScienceOn
5 Eisch, J. J. In Comprehensive Organic Synthesis; Brewster, J. H., Ed.; Pergamon Press: Oxford, 1991; Vol. 8, p 733.
6 Zweifel, G., In Aspects of Mechanism and Organometallic Chemistry; Brewster, J. H., Ed.; Plenum Press: New York, 1978.
7 Zweifel, G. In Comprehensive Organic Chemistry; Barton, D. H. R.; Ollis, W. D., Eds.; Pergamon Press: Oxford, 1979; p 1013.
8 Negishi, E. Organometallics in Organic Synthesis; Wiley:New York, 1980.
9 Saito, S. In Main Group Metals in Organic Synthesis; Yamamoto, H.; Oshima, K., Eds.; Wiley-VCH: Weinheim, 2004; p 189.
10 Miller, J. A. In Chemistry of Aluminum, Gallium, Indium and Thallium; Downs, A. J., Ed.; Blackie Academic: London, 1993; p 372.
11 Bundens, J. W.; Francl, M. M. Organomet. 1993, 12(5), 1608-1615.   DOI   ScienceOn
12 Egger, K. W. J. Am. Chem. Soc. 1969, 91(11), 2867-2871.   DOI
13 Eisch, J. J. In Comprehensive Organometallic Chemistry; Wilkinson, G.; Stone, F. G. A.; Abel, E. W., Eds.; Pergamon Press: Oxford, U.K., 1982; Chapter 6.
14 Gropen, O.; Haaland, A. Acta. Chem. Scand. Ser. A 1981, 35, 305.
15 Gropen, O.; Haaland, A. Acta. Chem. Scand. Ser. A 1982, 36, 435.
16 Sakai, S. J. Phys. Chem. 1991, 95(1), 175-178.   DOI
17 Higashi, G. S.; Raghavachari, K.; Steigerwald, M. L. J. Vac. Sci. Tech. B: Microelectronics and Nanometer Structures 1990, 8(1), 103-105.   DOI
18 Dahlmann, M.; Lautens, M. In Metal-Catalysed Hydroalumination Reactions; Togni, A., Gruzmacher, H., Eds.; Wiley-VCH Verlag GmbH: 2001.
19 Pankratyev, E. Y.; et al. Organomet. 2009, 28(4), 968-977.   DOI   ScienceOn
20 Houk, K. N.; et al. Tetrahedron 1984, 40(12), 2257-2274.   DOI   ScienceOn
21 Wang, X.; et al. J. Org. Chem. 1990, 55(9), 2601-2609.   DOI
22 Nagase, S.; Ray, N. K.; Morokuma, K. J. Am. Chem. Soc. 1980, 102(13), 4536−4537.   DOI
23 Van Eikema Hommes, N. J. R.; Schleyer, P. V. R. J. Org. Chem. 1991, 56(12), 4074-4076.   DOI
24 Chey, J.; et al. Organomet. 1990, 9(9), 2430-2436.   DOI
25 Bundens, J. W.; Yudenfreund, J.; Francl, M. M. Organomet. 1999, 18(19), 3913-3920.   DOI   ScienceOn
26 Singh, S. P.; Thankachan, P. P. J. Mol. Model. 2011, 18(2), 751-754.
27 Frisch, M. J.; et al. GAUSSIAN98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
28 Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.   DOI   ScienceOn
29 Gordon, M. S. J. Am. Chem. Soc. 1980, 102(25), 7419-7422.   DOI
30 Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54(2), 724-728.   DOI
31 Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56(5), 2257-2261.   DOI
32 Hariharan, P. C.; Pople, J. A. Mol. Phys.: An International Journal at the Interface between Chemistry and Physics 1974, 27(1), 209-214.
33 Gamez, J. A.; et al., Chemistry - A European Journal 2008, 14(7), 2201−2208.   DOI   ScienceOn
34 Scuseria, G. E.; Schaefer, H. F. J. Chem. Phys. 1989, 90(7), 3629-3636.   DOI
35 Pople, J. A.; Gordon, M. J. Am. Chem. Soc. 1967, 89(17), 4253-4261.   DOI
36 Cocks, A. T.; Egger, K. W. J. Chem. Soc., Faraday Transactions 1: Physical Chemistry in Condensed Phases 1972, 68, 423-428.
37 Aldridge, S.; Downs, A. J. Chem. Rev. 2001, 101(11), 3305−3366.   DOI   ScienceOn
38 Rao, B. K.; et al. Phys. Rev. Lett. 2001, 86(4), 692.   DOI   ScienceOn
39 Greenwood, N. N. Chem. Soc. Rev. 1992, 21(1), 49−57.
40 Lipscomb, W. N. Science 1977, 196(4294), 1047-1055.   DOI
41 Woon, D. E.; Dunning, J. T. H. J. Chem. Phys. 1993, 98(2), 1358-1371.   DOI
42 Hariharan, P. C.; Pople, J. A. Theoretical Chemistry Accounts: Theory, Computation, and Modeling. Theoretica Chimica Acta 1973, 28(3), 213-222.   DOI
43 Clark, T.; et al. J. Comp. Chem. 1983, 4(3), 294-301.   DOI
44 Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80(7), 3265-3269.   DOI
45 Kendall, R. A.; Dunning, J. T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96(9), 6796-6806.   DOI
46 Dunning, J. T. H. J. Chem. Phys. 1989, 90(2), 1007-1023.   DOI
47 Peterson, K. A.; Woon, D. E.; Dunning, J. T. H. J. Chem. Phys. 1994, 100(10), 7410−7415.   DOI   ScienceOn
48 Wilson, A. K.; van Mourik, T.; Dunning, T. H. J. Mol. Struct.: THEOCHEM, 1996, 388, 339-349.   DOI   ScienceOn
49 Head-Gordon, M.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1988, 153(6), 503-506.   DOI   ScienceOn
50 Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166(3), 275-280.   DOI   ScienceOn
51 Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166(3), 281-289.   DOI   ScienceOn
52 Head-Gordon, M.; Head-Gordon, T. Chem. Phys. Lett. 1994, 220(1−2), 122-128.   DOI   ScienceOn
53 Saebo, S.; Almlof, J. Chem. Phys. Lett. 1989, 154(1), 83-89.   DOI   ScienceOn
54 Cizek, J. Adv. Chem. Phys. 1969, 14, 35.   DOI
55 Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76(4), 1910-1918.   DOI
56 Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F. J. Chem. Phys. 1988, 89(12), 7382-7387.   DOI