• Title/Summary/Keyword: AlTiN Coated Tool

Search Result 44, Processing Time 0.022 seconds

The Evaluation of PVD Coated HSS Endmill (HSS엔드밀의 PVD코팅 및 성능평가)

  • Lee, Sang-Seog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.4
    • /
    • pp.119-125
    • /
    • 2013
  • To enhance the cutting performance of high speed steel(HSS) endmill, single and multilayer coating is applied on the substrated of the HSS endmill. Coating material reduces cutting force and enhances resistance against abrasive wear. This paper presents the physical vapour deposition(PVD) coating technology and evaluate the PVD coated HSS endmill. The performance of coated HSS endmills are fifteen times better than uncoated HSS endmill on proposed cutting conditions. The TiAlN monolayer coated endmills(futura nano coating) are better than those of multilayer coated endmills(futura coating) on machined surface and tool wear.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

RSM-based MOALO optimization and cutting inserts evaluation in dry turning of AISI 4140 steel

  • Hamadi, Billel;Yallese, Mohamed Athmane;Boulanouar, Lakhdar;Nouioua, Mourad;Hammoudi, Abderazek
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • An experimental study is carried out to investigate the performance of the cutting tool regarding the insert wear, surface roughness, cutting forces, cutting power and material removal rate of three coated carbides GC2015 (TiCN-Al2O3-TiN), GC4215 (Al2O3-Ti(C,N)) and GC1015 (TiN) during the dry turning of AISI4140 steel. For this purpose, a Taguchi design (L9) was adopted for the planning of the experiments, the effects of cutting parameters on the surface roughness (Ra), tangential cutting force (Fz), the cutting power (Pc) and the material removal rate (MRR) were studied using analysis of variance (ANOVA), the response surface methodology (RSM) was used for mathematical modeling, with which linear mathematical models were developed for forecasting of Ra, Fz, Pc and MRR as a function of cutting parameters (Vc, f, and ap). Then, Multi-Objective Ant Lion Optimizer (MOALO) has been implemented for multi-objective optimization which allows manufacturers to enhance the production performances of the machined parts. Furthermore, in order to characterize and quantify the flank wear of the tested tools, some machining experiments were performed for 5 minutes of turning under a depth of 0.5 mm, a feed rate of 0.08 mm/rev, and a cutting speed of 350 m/min. The wear results led to a ratio (VB-GC4215/VB-GC2015) of 2.03 and (VB-GC1015/VB-GC2015) of 4.43, thus demonstrating the efficiency of the cutting insert GC2015. Moreover, SEM analysis shows the main wear mechanisms represented by abrasion, adhesion and chipping.

Evaluation of vibration property and machinability of spindle system in high speed machining center (고속 머시닝센터의 주축계 진동특성과 가공성 평가)

  • 김전하;강명창;김정석;김기태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.16-21
    • /
    • 2002
  • The high speed machining center(HMC) has been widely applied to manufacture a die and trial product in many machine industry. Because the evaluation fer the HMC is not sufficiently performed and the efficient cutting conditions aren't selected, a great loss has been caused in the cost aspect. In this study, the need of preliminary running time and unstable spindle speed is presented from the analysis of acceleration in idling. The Machinability fur the TiAlN coated flat end mill and STD11( $H_{R}$C60) is evaluated from the trends of tool wear and cutting force according to cutting conditions and slenderness ratio and a low response of tool dynamometer in high speed is proved. The resonance spindle speed is identified through the tool wear and natural frequency test.t.

  • PDF

A Study on the characteristics of the High Speed Machining for several Tool Materials change of Ellipse Mirror Machining to be used in Millimeter Wave Interferometer System (밀리미터파 간섭계용 타원 반사경의 공구 변화에 따른 고속절삭 특성 연구)

  • Lee, Sang-Yong;Kim, Geon-Hee;Kim, Hyo-Sik;Yang, Soon-Cheol;Hong, Chang-Deoc;Cho, Byung-Moo;Won, Jong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.22-27
    • /
    • 2007
  • This study aims to find the optimal cutting conditions, when ellipse mirrors consisted Aluminum alloy were made it the Millimeter-Wave Interferometer System mirror with several tools on the High-Speed Machine. Machining technique for precision machining characteristics of ellipse mirrors consisted Al6061 matter by Ball endmill is reported in this paper., Results of machining on the High-Speed Machine(using NCD(Natural Crystalline diamond), WC and coated TiAlN ${\phi}6mm$ ball endmill tool) had measurement of surface roughness and form accuracy with cutting conditions(the Feed rate, the Depth of cut and the Cutting speed). the Millimeter-Wave Interferometer System ellipse mirror had been machined foundational precision machining characteristics of aluminum.

  • PDF

Cutting Performance of a Developed Small-angle Spindle Tool (소형 앵글 스핀들 공구의 절삭성능에 관한 연구)

  • Kim, Jin Su;Kim, Yohng Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2016
  • The cutting performance of a developed small-angle spindle tool was investigated with Al6061 using a TiAlN coated high-speed steel end mill. Up-cut and down-cut processes in a milling machine were carried out at the range of 1000-4000 rpm for spindle speed and 50-300 mm/min for feed rate. As a result, the highest cutting force in the Fx direction was obtained from the up-cut process when the spindle speed was 1000 rpm and the feed rate was 100 mm/min. In the Fy direction, the highest cutting force appeared in the up-cut process at a feed rate of 250 mm/min at the same spindle speed. Conversely, the lowest cutting force came out in the up-cut process at a spindle speed of 4000 rpm and a feed rate of 50 mm/min. As for surface finish, the finest surface roughness was obtained as Ra 0.7642 um at a spindle speed of 4000 rpm and a feed rate of 50 mm/min. Consequently, given the cutting performance of the developed small-angle spindle tool, we conclude that its use in industrial practice is feasible.

Effect of Ball End Mill Cutting Environments on Machinability of Hardened Tool Steel (볼 엔드밀 가공환경 조건이 고경도 강재의 절삭 특성에 미치는 영향)

  • 이영주;원시태
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 2004
  • This research conducted milling tests to study effects of cutting environment conditions of ball end mills on the characteristics of hard milling process. KP4 steels and STD11 heat treated steels were used as the workpiece and WC-Co ball end mill tools with TiAlN coated were utilized in the cutting tests. Dry cutting without coolant and semi-dry cutting using botanical oil coolant were conducted and MQL(Minimum Quantity Lubricant) device was used to spray coolant. Cutting forces, tool wear and surface roughness were measured in the cutting tests. Results showed that dry cutting of KP4 and hardened STD11 specimens produced better surface quality and wear performance than MQL spray cutting did.

The Analysis of Machining Characteristics of SKD11 by Orthogonal Cutting Experiments (SKD11의 2차원 절삭실험을 통한 절삭 특성 해석)

  • 김남규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.365-370
    • /
    • 1999
  • SKD11 is one of the most difficult workpiece for machining, so it is necessary to evaluate the machining characteristics of SKD11. The workpiece was made to be the pipe form and heat-treated to HRC45. In this paper, the orthogonal cutting experiment of this material was carried out with TiAlN coated WC cutting tool of 4 kinds of rake angle. After cutting experiment, cutting characteristics of SKD11 were investigated according to variation of cutting speed, feedrate and rake angle.

  • PDF

Optimization of Cutting Force for End Milling with the Direction of Cutter Rotation (엔드밀가공에서 커터회전방향에 따른 절삭력의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.79-84
    • /
    • 2017
  • This paper outlines the Taguchi optimization methodology, which is applied to optimize cutting parameters in end milling when machining STS304 with TiAlN coated SKH59 tool under up and down end milling conditions. The end milling parameters evaluated are depth of cut, spindle speed and feed rate. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these end milling parameters. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. An orthogonal array of $L_9(33)$ was used. The most important input parameter for cutting force, however, is the feed rate, and depending on the cutter rotation direction. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

  • PDF

A Study on the Machinability of High Hardness Steel in Ball End Milling (볼 엔드밀 가공에서 고경도 강재의 절삭특성에 관한 연구)

  • Won S. T.;Hur J. H.;Lee Y. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.11-18
    • /
    • 2002
  • The STD11 and KP4 are important steels and applied to the manufacturing of the die and mold. The purpose of this study is to investigate the machinability of tool steels of STD11(HRC60) and KP4(HRC32) when machining them by using ball end milling tools coated with TiAlN. Cutting forces by using a Kistler piezo-cell type tool dynamometer, surface roughness and tool wear by using tool microscope are used in the tests. The results from the cutting tests of KP4 specimens show that 85m/min. of cutting speed and 0.32mm/rev. of feed per revolution are optimum conditions for the higher productivity and 0.26mm/rev. with the same cutting speed are optimum conditions for better surface finishing. The results from machining STD11 workpiece at 30m/min. of cutting speed and 0.17m/rev. of feed per revolution show recommended for the higher productivity. The KP4 shows relatively smaller cutting forces than STD11 and STD11 shows the better surface finish than KP4.

  • PDF